Abstract
The predictions of the ultralocal limit of the activated hopping theory of highly viscous simple fluids and colloidal suspensions [K. S. Schweizer and G. Yatsenko, J. Chem. Phys. 127, 164505 (2007), preceding paper] for the relaxation time and effective activation barrier are compared with those of diverse alternative theoretical approaches and computer simulation. A nonlinear connection between the barrier height and excess pressure as empirically suggested by simulations of polydisperse repulsive force fluids is identified. In the dense normal and weakly dynamical precursor regime, where entropic barriers of hard spheres are nonexistent or of order the thermal energy, agreement with an excess entropy ansatz is found. In the random close packing or jamming limit, the barrier hopping theory predicts an essential singularity stronger than the free volume model, which is in agreement with the simplest entropic droplet nucleation and replica field theoretic approaches. Upon further technical simplification of the theory, close connections with renormalization group and nonperturbative memory function based studies of activated transport of a Brownian particle in a disordered medium can been identified. Several analytic arguments suggest a qualitative consistency between the barrier hopping theory and solid-state elastic models based on the high frequency shear modulus and a molecular-sized apparent activation volume. Implications of the analysis for the often high degeneracy of conflicting explanations of glassy dynamics are discussed.
References
93
Referenced
45
10.1063/1.1286035
/ J. Appl. Phys. (2000)10.1063/1.1696442
/ J. Chem. Phys. (1965)10.1103/PhysRevA.40.1045
/ Phys. Rev. A (1989)10.1103/PhysRevLett.86.5526
/ Phys. Rev. Lett. (2001)10.1073/pnas.97.7.2990
/ Proc. Natl. Acad. Sci. U.S.A. (2000)10.1063/1.1796231
/ J. Chem. Phys. (2004)10.1088/0034-4885/55/3/001
/ Rep. Prog. Phys. (1992)10.1088/0953-8984/11/10A/002
/ J. Phys.: Condens. Matter (1999){'key': '2023080209294073400_c5c', 'first-page': '855', 'volume': '6-8', 'year': '1995', 'journal-title': 'Transp. Theory Stat. Phys.'}
/ Transp. Theory Stat. Phys. (1995)10.1103/PhysRevLett.79.2827
/ Phys. Rev. Lett. (1997)10.1016/S0022-3093(98)00563-8
/ J. Non-Cryst. Solids (1998)10.1103/PhysRevE.58.3515
/ Phys. Rev. E (1998)10.1080/0001873031000093582
/ Adv. Phys. (2003)10.1103/PhysRevLett.89.035704
/ Phys. Rev. Lett. (2002)10.1146/annurev.physchem.51.1.99
/ Annu. Rev. Phys. Chem. (2000)10.1103/RevModPhys.68.1259
/ Rev. Mod. Phys. (1996)10.1103/PhysRevLett.81.1841
/ Phys. Rev. Lett. (1998)10.1038/23819
/ Nature (London) (1998)10.1103/PhysRevE.68.011306
/ Phys. Rev. E (2003)10.1063/1.473004
/ J. Chem. Phys. (1996)10.1103/PhysRevE.68.041113
/ Phys. Rev. E (2003)10.1126/science.1093010
/ Science (2003)10.1103/PhysRevLett.95.090604
/ Phys. Rev. Lett. (2005)10.1103/PhysRevE.67.051301
/ Phys. Rev. E (2003)10.1063/1.2780861
/ J. Chem. Phys. (2007)10.1103/PhysRevE.68.041201
/ Phys. Rev. E (2003)10.1103/PhysRevA.35.3072
/ Phys. Rev. A (1987)10.1007/BF02458780
/ Nuovo Cimento D (1994)10.1063/1.1578632
/ J. Chem. Phys. (2003)10.1063/1.2217739
/ J. Chem. Phys. (2006){'key': '2023080209294073400_c18b', 'first-page': '044509', 'volume': '74', 'year': '2006', 'journal-title': 'Phys. Rev. E'}
/ Phys. Rev. E (2006)10.1063/1.2137701
/ J. Chem. Phys. (2005)10.1038/381137a0
/ Nature (London) (1996)10.1088/0953-8984/11/10A/022
/ J. Phys.: Condens. Matter (1999)10.1021/jp064816j
/ J. Phys. Chem. B (2006)10.1063/1.2336197
/ J. Chem. Phys. (2006)10.1063/1.2409932
/ J. Chem. Phys. (2006)10.1038/nature02947
/ Nature (London) (2004)10.1103/PhysRevE.71.061501
/ Phys. Rev. E (2005)10.1063/1.1756854
/ J. Chem. Phys. (2004)10.1063/1.1756856
/ J. Chem. Phys. (2004)10.1021/jp047763j
/ J. Phys. Chem. B (2004)10.1103/RevModPhys.78.865
/ Rev. Mod. Phys. (2006){'volume-title': 'Statistical Mechanics', 'year': '2000', 'key': '2023080209294073400_c25a'}
/ Statistical Mechanics (2000){'volume-title': 'Molecular Hydrodynamics', 'year': '1980', 'key': '2023080209294073400_c25b'}
/ Molecular Hydrodynamics (1980)10.1063/1.1288804
/ J. Chem. Phys. (2000)10.1103/PhysRevA.22.287
/ Phys. Rev. A (1980)10.1103/PhysRevA.32.3130
/ Phys. Rev. A (1985)10.1016/S0378-4371(97)00609-2
/ Physica A (1998)10.1103/PhysRevE.61.2967
/ Phys. Rev. E (2000)10.1103/PhysRevA.15.2545
/ Phys. Rev. A (1977)10.1088/0953-8984/11/28/303
/ J. Phys.: Condens. Matter (1999)10.1103/PhysRevE.65.032501
/ Phys. Rev. E (2003)10.1063/1.454295
/ J. Chem. Phys. (1988)10.1103/PhysRevLett.84.2064
/ Phys. Rev. Lett. (2000)10.1038/35014561
/ Nature (London) (2000)10.1103/PhysRevLett.96.225502
/ Phys. Rev. Lett. (2006)10.1063/1.1578633
/ J. Chem. Phys. (2003)10.1063/1.1730566
/ J. Chem. Phys. (1961)10.1103/PhysRevLett.77.4198
/ Phys. Rev. Lett. (1996)10.1063/1.465782
/ J. Chem. Phys. (1993)10.1103/PhysRevE.68.031204
/ Phys. Rev. E (2003)10.1103/PhysRevE.65.041405
/ Phys. Rev. E (2002)10.1103/PhysRevB.36.8552
/ Phys. Rev. B (1987)10.1146/annurev.physchem.58.032806.104653
/ Annu. Rev. Phys. Chem. (2007)10.1103/PhysRevA.40.1045
/ Phys. Rev. A (1989)10.1063/1.2041507
/ J. Chem. Phys. (2005){'volume': '2006', 'journal-title': 'J. Stat. Mech.: Theory Exp.', 'first-page': 'P03017', 'key': '2023080209294073400_c41b'}
/ J. Stat. Mech.: Theory Exp.10.1063/1.1614180
/ J. Chem. Phys. (2003)10.1007/BF02188692
/ J. Stat. Phys. (1994)10.1209/epl/i2003-10115-2
/ Europhys. Lett. (2004)10.1209/epl/i2001-00395-x
/ Europhys. Lett. (2001)10.1103/PhysRevLett.97.095702
/ Phys. Rev. Lett. (2006)10.1103/RevModPhys.78.953
/ Rev. Mod. Phys. (2006)10.1103/PhysRevB.53.2171
/ Phys. Rev. B (1996)10.1103/PhysRevLett.81.1031
/ Phys. Rev. Lett. (1998)10.1103/PhysRev.171.682
/ Phys. Rev. (1968)10.1103/PhysRevLett.68.974
/ Phys. Rev. Lett. (1992)10.1016/j.jnoncrysol.2006.02.173
/ J. Non-Cryst. Solids (2006)10.1063/1.1674820
/ J. Chem. Phys. (1971){'volume-title': 'Theory of Simple Liquids', 'year': '1986', 'key': '2023080209294073400_c52'}
/ Theory of Simple Liquids (1986)10.1063/1.476428
/ J. Chem. Phys. (1998){'first-page': '274', 'volume-title': 'Studies in Statistical Mechanics', 'year': '1982', 'key': '2023080209294073400_c54'}
/ Studies in Statistical Mechanics (1982)10.1063/1.2405354
/ J. Chem. Phys. (2007){'key': '2023080209294073400_c56'}
10.1122/1.550530
/ J. Rheol. (1994)10.1103/PhysRevB.75.092102
/ Phys. Rev. B (2007)10.1088/0953-8984/19/20/205123
/ J. Phys.: Condens. Matter (2007)10.1088/0953-8984/14/23/201
/ J. Phys.: Condens. Matter (2002)10.1103/PhysRevLett.97.195701
/ Phys. Rev. Lett. (2006)10.1088/0953-8984/19/20/205101
/ J. Phys.: Condens. Matter (2007)10.1126/science.1120714
/ Science (2005)- C. Dalle-Ferrier, C. Thibierge, C. Alba-Simonesco, L. Bertheir, G. Biroli, J.-P. Bouchaud, F. Ladieu, D. L’Hote, and G. Tarjus, arXiv:cond-mat/0706.1906.
Dates
Type | When |
---|---|
Created | 17 years, 9 months ago (Oct. 25, 2007, 4:58 p.m.) |
Deposited | 2 years ago (Aug. 2, 2023, 5:29 a.m.) |
Indexed | 3 weeks, 1 day ago (July 30, 2025, 6:49 a.m.) |
Issued | 17 years, 9 months ago (Oct. 25, 2007) |
Published | 17 years, 9 months ago (Oct. 25, 2007) |
Published Online | 17 years, 9 months ago (Oct. 25, 2007) |
Published Print | 17 years, 9 months ago (Oct. 28, 2007) |
@article{Schweizer_2007, title={Relationships between the single particle barrier hopping theory and thermodynamic, disordered media, elastic, and jamming models of glassy systems}, volume={127}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.2780863}, DOI={10.1063/1.2780863}, number={16}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Schweizer, Kenneth S.}, year={2007}, month=oct }