Abstract
Chalcogenide materials are receiving increasing interest for their many applications as active materials in emerging memories, such as phase-change memories, programmable metallization cells, and cross-point devices. The great advantage of these materials is the capability to appear in two different phases, the amorphous and the crystalline phases, with rather different electrical properties. The aim of this work is to provide a physically based model for conduction in the amorphous chalcogenide material, able to predict the current-voltage (I−V) characteristics as a function of phase state, temperature, and cell geometry. First, the trap-limited transport at relatively low currents (subthreshold regime) is studied, leading to a comprehensive model for subthreshold conduction accounting for (a) the shape of the I−V characteristics, (b) the measured temperature dependence, (c) the dependence of subthreshold slope on the thickness of the amorphous phase, and (d) the voltage dependence of the activation energy. The threshold switching mechanism is then explained by the nonequilibrium population in high-mobility shallow traps at high electric field and by the nonuniform field distribution along the amorphous layer thickness. A single analytical model is then shown which is able to account for subthreshold conduction, threshold switching, negative differential resistance region, and ON regime. The model can be applied for fast yet physically based computation of the current in chalcogenide-based devices (e.g., phase change memory cells and arrays) as a function of applied voltage, temperature, and programmed state.
References
39
Referenced
559
{'year': '2004', 'key': '2023080100205781500_c1', 'first-page': '662'}
(2004){'key': '2023080100205781500_c2', 'first-page': '255', 'volume': '2003', 'year': '2003', 'journal-title': 'Tech. Dig. - Int. Electron Devices Meet.'}
/ Tech. Dig. - Int. Electron Devices Meet. (2003){'key': '2023080100205781500_c3', 'first-page': '803', 'volume': '2001', 'year': '2001', 'journal-title': 'Tech. Dig. - Int. Electron Devices Meet.'}
/ Tech. Dig. - Int. Electron Devices Meet. (2001)10.1016/j.sse.2005.10.046
/ Solid-State Electron. (2006)10.1109/TNANO.2005.846936
/ IEEE Trans. Nanotechnol. (2005){'key': '2023080100205781500_c6', 'first-page': '905', 'volume': '2003', 'year': '2003', 'journal-title': 'Tech. Dig. - Int. Electron Devices Meet.'}
/ Tech. Dig. - Int. Electron Devices Meet. (2003)10.1103/PhysRevLett.21.1450
/ Phys. Rev. Lett. (1968){'key': '2023080100205781500_c8', 'first-page': '48', 'volume': '21', 'year': '1996', 'journal-title': 'Mater. Res. Soc. Symp. Proc.'}
/ Mater. Res. Soc. Symp. Proc. (1996)10.1109/TED.2003.823243
/ IEEE Trans. Electron Devices (2004)10.1016/j.sse.2005.10.013
/ Solid-State Electron. (2005)10.1109/TED.2006.888752
/ IEEE Trans. Electron Devices (2007){'year': '2004', 'key': '2023080100205781500_c12', 'first-page': '18'}
(2004){'key': '2023080100205781500_c13', 'first-page': '893', 'volume': '2003', 'year': '2003', 'journal-title': 'Tech. Dig. - Int. Electron Devices Meet.'}
/ Tech. Dig. - Int. Electron Devices Meet. (2003)10.1109/LED.2004.831219
/ IEEE Electron Device Lett. (2004)10.1109/LED.2005.857719
/ IEEE Electron Device Lett. (2005)10.1109/LED.2004.836032
/ IEEE Electron Device Lett. (2004)10.1109/IEDM.2004.1419330
/ Tech. Dig. - Int. Electron Devices Meet. (2004){'key': '2023080100205781500_c18', 'first-page': '401', 'volume': '2006', 'year': '2006', 'journal-title': 'Tech. Dig. - Int. Electron Devices Meet.'}
/ Tech. Dig. - Int. Electron Devices Meet. (2006)10.1063/1.1884248
/ J. Appl. Phys. (2005)10.1088/0022-3727/9/18/008
/ J. Phys. D (1976)10.1116/1.1318423
/ J. Vac. Sci. Technol. (1973)10.1103/PhysRevLett.22.1065
/ Phys. Rev. Lett. (1969){'key': '2023080100205781500_c23', 'first-page': '127', 'volume': '138', 'year': '1991', 'journal-title': 'IEE Proc.'}
/ IEE Proc. (1991)10.1016/0040-6090(71)90115-5
/ Thin Solid Films (1971)10.1109/TED.2006.885527
/ IEEE Trans. Electron Devices (2006)10.1109/TED.2006.885525
/ IEEE Trans. Electron Devices (2006)10.1109/TED.2004.825805
/ IEEE Trans. Electron Devices (2004)10.1063/1.2737137
/ Appl. Phys. Lett. (2007)10.1109/T-ED.1973.17618
/ IEEE Trans. Electron Devices (1973)10.1063/1.328036
/ J. Appl. Phys. (1980)10.1103/RevModPhys.50.209
/ Rev. Mod. Phys. (1978)10.1088/0022-3719/4/11/008
/ J. Phys. C (1971)10.1088/0022-3719/4/11/009
/ J. Phys. C (1971)10.1088/0022-3719/6/23/023
/ J. Phys. C (1973)10.1063/1.1657043
/ J. Appl. Phys. (1969)10.1143/JJAP.44.7340
/ Jpn. J. Appl. Phys., Part 1 (2005)10.1103/PhysRevLett.32.1429
/ Phys. Rev. Lett. (1974)10.1038/nmat1350
/ Nat. Mater. (2005){'year': '2004', 'key': '2023080100205781500_c39', 'first-page': '209'}
(2004)
Dates
Type | When |
---|---|
Created | 17 years, 11 months ago (Sept. 14, 2007, 6:36 p.m.) |
Deposited | 2 years ago (July 31, 2023, 8:21 p.m.) |
Indexed | 35 minutes ago (Aug. 21, 2025, 2:44 a.m.) |
Issued | 17 years, 11 months ago (Sept. 1, 2007) |
Published | 17 years, 11 months ago (Sept. 1, 2007) |
Published Online | 17 years, 11 months ago (Sept. 14, 2007) |
Published Print | 17 years, 11 months ago (Sept. 1, 2007) |
@article{Ielmini_2007, title={Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices}, volume={102}, ISSN={1089-7550}, url={http://dx.doi.org/10.1063/1.2773688}, DOI={10.1063/1.2773688}, number={5}, journal={Journal of Applied Physics}, publisher={AIP Publishing}, author={Ielmini, Daniele and Zhang, Yuegang}, year={2007}, month=sep }