Crossref journal-article
AIP Publishing
The Journal of Chemical Physics (317)
Abstract

Metal shielding constants and chemical shifts are determined for nine transition metal complexes using an uncoupled formalism with orbitals and eigenvalues determined using the Yang-Wu implementation [W. Yang and Q. Wu, Phys. Rev. Lett. 89, 143002 (2002)] of the optimized effective potential approach in density functional theory. Preliminary calculations using generalized gradient approximation functionals quantify the influence of the variables in the optimized effective potential implementation. In particular, a flexible potential expansion is necessary for a precise calculation of these quantities. Hybrid functionals are then considered. Expanding the potential in the primary orbital basis yields chemical shifts that are a notable improvement over conventional hybrid values, and which are a marginal improvement over those obtained using a high-quality generalized gradient approximation. Similar shifts are obtained using a more flexible potential expansion, although care is required to avoid unphysical structure in the exchange-correlation potential.

Bibliography

Teale, A. M., Cohen, A. J., & Tozer, D. J. (2007). Transition metal NMR chemical shifts from optimized effective potentials. The Journal of Chemical Physics, 126(7).

Authors 3
  1. Andrew M. Teale (first)
  2. Aron J. Cohen (additional)
  3. David J. Tozer (additional)
References 51 Referenced 22
  1. 10.1002/(SICI)1096-987X(19990115)20:1<91::AID-JCC10>3.0.CO;2-C / J. Comput. Chem. (1999)
  2. {'first-page': '85', 'volume-title': 'Calculation of NMR and EPR Parameters', 'year': '2004', 'key': '2023072322003115100_c2'} / Calculation of NMR and EPR Parameters (2004)
  3. 10.1103/PhysRevB.37.2502 / Phys. Rev. B (1988)
  4. 10.1103/PhysRev.140.A1133 / Phys. Rev. (1965)
  5. 10.1016/S0009-2614(01)00221-4 / Chem. Phys. Lett. (2001)
  6. 10.1103/PhysRevA.50.2138 / Phys. Rev. A (1994)
  7. 10.1016/j.cplett.2004.09.112 / Chem. Phys. Lett. (2004)
  8. {'key': '2023072322003115100_c8', 'first-page': '317', 'volume': '90', 'year': '1953', 'journal-title': 'Phys. Rev.'} / Phys. Rev. (1953)
  9. 10.1103/PhysRevA.14.36 / Phys. Rev. A (1976)
  10. 10.1016/j.cplett.2003.08.101 / Chem. Phys. Lett. (2003)
  11. {'key': '2023072322003115100_c11', 'first-page': '191', 'volume': '602–603', 'year': '2002', 'journal-title': 'J. Mol. Struct.'} / J. Mol. Struct. (2002)
  12. 10.1021/ct060038n / J. Chem. Theory Comput. (2006)
  13. 10.1016/j.cplett.2003.10.138 / Chem. Phys. Lett. (2004)
  14. 10.1016/j.cplett.2003.10.139 / Chem. Phys. Lett. (2004)
  15. 10.1016/j.cplett.2003.12.111 / Chem. Phys. Lett. (2004)
  16. 10.1016/j.cplett.2004.04.048 / Chem. Phys. Lett. (2004)
  17. 10.1002/qua.20513 / Int. J. Quantum Chem. (2005)
  18. 10.1063/1.1370527 / J. Chem. Phys. (2001)
  19. 10.1063/1.1398093 / J. Chem. Phys. (2001)
  20. 10.1103/PhysRevA.46.5453 / Phys. Rev. A (1992)
  21. 10.1002/mrc.1807 / Magn. Reson. Chem. (2006)
  22. 10.1002/mrc.1405 / Magn. Reson. Chem. (2004)
  23. 10.1039/a907167i / Phys. Chem. Chem. Phys. (2000)
  24. 10.1002/chem.200400256 / Chem.-Eur. J. (2004)
  25. 10.1063/1.474053 / J. Chem. Phys. (1997)
  26. 10.1021/ja00106a056 / J. Am. Chem. Soc. (1995)
  27. 10.1002/(SICI)1096-987X(19980130)19:2<113::AID-JCC3>3.0.CO;2-X / J. Comput. Chem. (1998)
  28. 10.1021/jp994480w / J. Phys. Chem. A (2000)
  29. 10.1007/s00214-002-0338-x / Theor. Chem. Acc. (2002)
  30. 10.1063/1.1668633 / J. Chem. Phys. (2004)
  31. 10.1063/1.1673095 / J. Chem. Phys. (1970)
  32. {'year': '2005', 'key': '2023072322003115100_c32'} (2005)
  33. {'year': '1998', 'key': '2023072322003115100_c33'} (1998)
  34. 10.1103/PhysRevLett.89.143002 / Phys. Rev. Lett. (2002)
  35. 10.1142/S0219633603000690 / J. Theor. Comput. Chem. (2003)
  36. {'first-page': '54', 'volume-title': 'Numerical Recipes', 'year': '1986', 'key': '2023072322003115100_c36'} / Numerical Recipes (1986)
  37. {'key': '2023072322003115100_c37', 'first-page': '117', 'volume': '6', 'year': '1934', 'journal-title': 'Acad. Ital. Rome'} / Acad. Ital. Rome (1934)
  38. 10.1063/1.464913 / J. Chem. Phys. (1993)
  39. 10.1103/PhysRevB.37.785 / Phys. Rev. B (1988)
  40. 10.1021/j100096a001 / J. Phys. Chem. (1994)
  41. 10.1103/PhysRevA.38.3098 / Phys. Rev. A (1988)
  42. 10.1063/1.1630011 / J. Chem. Phys. (2003)
  43. 10.1063/1.1381013 / J. Chem. Phys. (2001)
  44. 10.1103/PhysRevLett.83.5459 / Phys. Rev. Lett. (1999)
  45. 10.1103/PhysRevA.50.3827 / Phys. Rev. A (1994)
  46. {'first-page': '2991', 'volume-title': 'Phys. Chem. Chem. Phys.', 'year': '2005', 'key': '2023072322003115100_c46'} / Phys. Chem. Chem. Phys. (2005)
  47. 10.1063/1.477267 / J. Chem. Phys. (1998)
  48. 10.1063/1.2194546 / J. Chem. Phys. (2006)
  49. 10.1063/1.2345650 / J. Chem. Phys. (2006)
  50. 10.1063/1.478401 / J. Chem. Phys. (1999)
  51. 10.1063/1.478522 / J. Chem. Phys. (1999)
Dates
Type When
Created 18 years, 6 months ago (Feb. 15, 2007, 6:15 p.m.)
Deposited 2 years, 1 month ago (July 23, 2023, 6 p.m.)
Indexed 3 weeks, 6 days ago (July 30, 2025, 6:47 a.m.)
Issued 18 years, 6 months ago (Feb. 15, 2007)
Published 18 years, 6 months ago (Feb. 15, 2007)
Published Online 18 years, 6 months ago (Feb. 15, 2007)
Published Print 18 years, 6 months ago (Feb. 21, 2007)
Funders 0

None

@article{Teale_2007, title={Transition metal NMR chemical shifts from optimized effective potentials}, volume={126}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.2436876}, DOI={10.1063/1.2436876}, number={7}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Teale, Andrew M. and Cohen, Aron J. and Tozer, David J.}, year={2007}, month=feb }