Abstract
The basis set limit Møller-Plesset second-order equilibrium bond lengths of He2, Be2, and Ne2, accurate to 0.01a0, are computed to be 5.785a0, 5.11a0, and 6.05a0. The corresponding binding energies are 22.4±0.1, 2180±20, and 86±2μEh, respectively. An accuracy of 95% in the binding energy requires an aug-cc-pV6Z basis or larger for conventional Møller-Plesset theory. This accuracy is obtained using an aug-cc-pV5Z basis if geminal basis functions with a linear correlation factor are included and with an aug-cc-pVQZ basis if the linear correlation factor is replaced by exp(−γr12) with γ=1. The correlation factor r12exp(−γr12) does not perform as well, describing the atom more efficiently than the dimer. The geminal functions supplement the orbital basis in the description of both the short-range correlation, at electron coalescence, and the long-range dispersion correlation and the values of γ that give the best binding energies are smaller than those that are optimum for the atom or the dimer. It is important to sufficiently reduce the error due to the resolution of the identity approximation for the three- and four-electron integrals and we recommend the complementary auxiliary basis set method. The effect of both orbital and geminal basis set superposition error must be considered to obtain accurate binding energies with small orbital basis sets. In this respect, we recommend using exp(−γr12) with localized orbitals and the original orbital-variant formalism.
References
50
Referenced
73
{'volume-title': 'Quantum Mechanical Prediction of Thermochemical Data', 'year': '2001', 'author': 'Cioslowski', 'key': '2023062603535898000_c1'}
/ Quantum Mechanical Prediction of Thermochemical Data by Cioslowski (2001)10.1063/1.456415
/ J. Chem. Phys. (1989)10.1063/1.460205
/ J. Chem. Phys. (1991)10.1063/1.477422
/ J. Chem. Phys. (1998)10.1063/1.479454
/ J. Chem. Phys. (1999)10.1063/1.1638736
/ J. Chem. Phys. (2004)10.1063/1.449725
/ J. Chem. Phys. (1985)10.1063/1.470985
/ J. Chem. Phys. (1996)10.1063/1.481224
/ J. Chem. Phys. (2000)10.1063/1.1811608
/ J. Chem. Phys. (2004)10.1063/1.1445744
/ J. Chem. Phys. (2002)10.1021/cr990048z
/ Chem. Rev. (Washington, D.C.) (2000)10.1063/1.476510
/ J. Chem. Phys. (1998)10.1063/1.473863
/ J. Chem. Phys. (1997)10.1063/1.479839
/ J. Chem. Phys. (1999)10.1063/1.1290001
/ J. Chem. Phys. (2000)10.1063/1.1379577
/ J. Chem. Phys. (2001)10.1002/(SICI)1097-461X(1997)63:4<805::AID-QUA1>3.0.CO;2-#
/ Int. J. Quantum Chem. (1997)10.1063/1.1390512
/ J. Chem. Phys. (2001)10.1002/cpa.3160100201
/ Commun. Pure Appl. Math. (1957)10.1063/1.1727605
/ J. Chem. Phys. (1966)10.1007/BF00527669
/ Theor. Chim. Acta (1985)10.1080/00268977200100011
/ Mol. Phys. (1972)10.1016/0009-2614(87)80005-2
/ Chem. Phys. Lett. (1987)10.1063/1.471093
/ J. Chem. Phys. (1996)10.1063/1.479830
/ J. Chem. Phys. (1999)10.1088/0953-4075/32/13/201
/ J. Phys. B (1999)10.1080/00268970010017315
/ Mol. Phys. (2001)10.1063/1.1384011
/ J. Chem. Phys. (2001)10.1002/cphc.200390006
/ ChemPhysChem (2003)10.1080/01442350600799921
/ Int. Rev. Phys. Chem. (2006)10.1063/1.1457446
/ J. Chem. Phys. (2002)10.1016/j.cplett.2004.09.041
/ Chem. Phys. Lett. (2004)10.1063/1.1999632
/ J. Chem. Phys. (2005)10.1063/1.1757439
/ J. Chem. Phys. (2004)10.1016/0009-2614(91)90471-K
/ Chem. Phys. Lett. (1991)10.1039/b507781h
/ Phys. Chem. Chem. Phys. (2005)10.1063/1.1742904
/ J. Chem. Phys. (2004){'key': '2023062603535898000_c39', 'first-page': '190', 'volume': '395', 'year': '2004', 'journal-title': 'J. Chem. Phys.'}
/ J. Chem. Phys. (2004){'year': '2005', 'key': '2023062603535898000_c40'}
(2005)10.1063/1.466438
/ J. Chem. Phys. (1994)10.1063/1.456153
/ J. Chem. Phys. (1989)10.1063/1.462569
/ J. Chem. Phys. (1992)10.1016/0009-2614(90)80112-Q
/ Chem. Phys. Lett. (1990)10.1016/0009-2614(93)89323-A
/ Chem. Phys. Lett. (1993)10.1080/00268977000101561
/ Mol. Phys. (1970)10.1063/1.469351
/ J. Chem. Phys. (1995)10.1135/cccc20030463
/ Collect. Czech. Chem. Commun. (2003)10.1080/002689799165396
/ Mol. Phys. (1999)10.1063/1.459923
/ J. Chem. Phys. (1991)
Dates
Type | When |
---|---|
Created | 18 years, 11 months ago (Sept. 2, 2006, 1:56 a.m.) |
Deposited | 2 years, 2 months ago (June 25, 2023, 11:54 p.m.) |
Indexed | 4 weeks ago (July 30, 2025, 6:47 a.m.) |
Issued | 18 years, 11 months ago (Sept. 1, 2006) |
Published | 18 years, 11 months ago (Sept. 1, 2006) |
Published Online | 18 years, 11 months ago (Sept. 1, 2006) |
Published Print | 18 years, 11 months ago (Sept. 7, 2006) |
@article{Tew_2006, title={A comparison of linear and nonlinear correlation factors for basis set limit Møller-Plesset second order binding energies and structures of He2, Be2, and Ne2}, volume={125}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.2338037}, DOI={10.1063/1.2338037}, number={9}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Tew, David P. and Klopper, Wim}, year={2006}, month=sep }