Abstract
Single particle Brownian dynamics simulation methods are employed to establish the full trajectory level predictions of our nonlinear stochastic Langevin equation theory of activated hopping dynamics in glassy hard sphere suspensions and fluids. The consequences of thermal noise driven mobility fluctuations associated with the barrier hopping process are determined for various ensemble-averaged properties and their distributions. The predicted mean square displacements show classic signatures of transient trapping and anomalous diffusion on intermediate time and length scales. A crossover to a stronger volume fraction dependence of the apparent nondiffusive exponent occurs when the entropic barrier is of order the thermal energy. The volume fraction dependences of various mean relaxation times and rates can be fitted by empirical critical power laws with parameters consistent with ideal mode-coupling theory. However, the results of our divergence-free theory are largely a consequence of activated dynamics. The experimentally measurable alpha relaxation time is found to be very similar to the theoretically defined mean reaction time for escape from the barrier-dominated regime. Various measures of decoupling have been studied. For fluid states with small or nonexistent barriers, relaxation times obey a simple log-normal distribution, while for high volume fractions the relaxation time distributions become Poissonian. The product of the self-diffusion constant and mean alpha relaxation time increases roughly as a logarithmic function of the alpha relaxation time. The cage scale incoherent dynamic structure factor exhibits nonexponential decay with a modest degree of stretching. A nearly universal collapse of the different volume fraction results occurs if time is scaled by the mean alpha relaxation time. Hence, time-volume fraction superposition holds quite well, despite the presence of stretching and volume fraction dependent decoupling associated with the stochastic barrier hopping process. The relevance of other origins of dynamic heterogeneity (e.g., mesoscopic domains), and comparison of our results with experiments, simulations, and alternative theories, is discussed.
References
82
Referenced
89
10.1063/1.1286035
/ J. Appl. Phys. (2000)10.1021/jp953538d
/ J. Phys. Chem. (1996)10.1016/S0022-3093(00)00225-8
/ J. Non-Cryst. Solids (2000)10.1146/annurev.physchem.51.1.99
/ Annu. Rev. Phys. Chem. (2000)10.1038/35065704
/ Nature (London) (2001)10.1088/0034-4885/55/3/001
/ Rep. Prog. Phys. (1992)10.1088/0953-8984/11/10A/002
/ J. Phys.: Condens. Matter (1999)10.1080/00411459508203937
/ Transp. Theory Stat. Phys. (1995)10.1103/PhysRevA.40.1045
/ Phys. Rev. A (1989)10.1103/PhysRevLett.86.5526
/ Phys. Rev. Lett. (2001)10.1073/pnas.97.7.2990
/ Proc. Natl. Acad. Sci. U.S.A. (2000)10.1016/0378-4371(95)00423-8
/ Physica A (1996)10.1143/PTPS.126.181
/ Prog. Theor. Phys. Suppl. (1997)10.1103/PhysRevLett.85.5356
/ Phys. Rev. Lett. (2000)10.1088/0953-8984/11/10/003
/ J. Phys.: Condens. Matter (1999)10.1016/S0022-3093(00)00195-2
/ J. Non-Cryst. Solids (2000)10.1103/PhysRevA.44.1169
/ Phys. Rev. A (1991)10.1103/PhysRevLett.81.4404
/ Phys. Rev. Lett. (1998)10.1063/1.453836
/ J. Chem. Phys. (1988)10.1103/PhysRevE.67.030501
/ Phys. Rev. E (2003)10.1103/PhysRevE.67.031506
/ Phys. Rev. E (2003)10.1103/PhysRevE.69.041202
/ Phys. Rev. E (2004)10.1063/1.1578632
/ J. Chem. Phys. (2003)10.1063/1.1578633
/ J. Chem. Phys. (2003)10.1063/1.1683077
/ J. Chem. Phys. (2004)10.1103/PhysRevE.71.041405
/ Phys. Rev. E (2005)10.1063/1.1756854
/ J. Chem. Phys. (2004)10.1063/1.1756856
/ J. Chem. Phys. (2004)10.1063/1.2135776
/ J. Chem. Phys. (2005)10.1103/PhysRevE.71.021401
/ Phys. Rev. E (2005)10.1063/1.2109887
/ J. Chem. Phys. (2005)10.1063/1.2109907
/ J. Chem. Phys. (2005)10.1021/la052740x
/ Langmuir (2006)10.1016/0378-4371(94)90533-9
/ Physica A (1994)10.1103/PhysRevE.68.021502
/ Phys. Rev. E (2003)10.1088/0305-4470/29/24/001
/ J. Phys. A (1996)10.1103/PhysRevE.67.022101
/ Phys. Rev. E (2003){'key': '2023062604033501600_c19e', 'first-page': '5636', 'volume': '59', 'year': '1999', 'journal-title': 'Phys. Rev. E'}
/ Phys. Rev. E (1999)10.1088/0305-4470/37/40/001
/ J. Phys. A (2004)10.1063/1.1638737
/ J. Chem. Phys. (2004)10.1080/00018737900101365
/ Adv. Phys. (1979)10.1063/1.478705
/ J. Chem. Phys. (1999)10.1103/PhysRevLett.58.792
/ Phys. Rev. Lett. (1987)10.1103/PhysRevE.52.1227
/ Phys. Rev. E (1995)10.1088/0305-4470/29/14/012
/ J. Phys. A (1996)10.1007/s100510050902
/ Eur. Phys. J. B (1999)10.1103/PhysRevLett.75.3701
/ Phys. Rev. Lett. (1995)10.1016/S0022-3093(98)00557-2
/ J. Non-Cryst. Solids (1998)10.1016/0022-3093(93)90283-4
/ J. Non-Cryst. Solids (1993)10.1021/jp047763j
/ J. Phys. Chem. B (2004){'volume-title': 'Phys. Rev. E', 'key': '2023062604033501600_c24'}
/ Phys. Rev. E10.1103/PhysRevA.35.3072
/ Phys. Rev. A (1987)10.1063/1.2137701
/ J. Chem. Phys. (2005){'volume-title': 'Theory of Simple Liquids', 'year': '1986', 'key': '2023062604033501600_c27'}
/ Theory of Simple Liquids (1986){'volume-title': 'Lectures on Phase Transitions and the Renormalization Group', 'year': '1992', 'key': '2023062604033501600_c28'}
/ Lectures on Phase Transitions and the Renormalization Group (1992){'volume-title': 'Liquids, Freezing and the Glass Transition', 'year': '1991', 'author': 'Hansen', 'key': '2023062604033501600_c29'}
/ Liquids, Freezing and the Glass Transition by Hansen (1991)10.1016/S0031-8914(40)90098-2
/ Physica (Amsterdam) (1940){'key': '2023062604033501600_c31', 'first-page': '215', 'volume': '62', 'year': '1990', 'journal-title': 'Rev. Mod. Phys.'}
/ Rev. Mod. Phys. (1990)10.1103/PhysRevLett.86.2062
/ Phys. Rev. Lett. (2001)10.1103/PhysRevE.58.6073
/ Phys. Rev. E (1998)10.1103/PhysRevE.49.4206
/ Phys. Rev. E (1994)10.1080/00411459508203943
/ Transp. Theory Stat. Phys. (1995)10.1103/PhysRevLett.89.095704
/ Phys. Rev. Lett. (2002)10.1016/S0301-0104(02)00667-5
/ Chem. Phys. (2002)10.1103/PhysRevE.72.031508
/ Phys. Rev. E (2005)10.1103/PhysRevE.58.3384
/ Phys. Rev. E (1998)10.1103/PhysRevLett.90.015901
/ Phys. Rev. Lett. (2003)10.1103/PhysRevE.72.011205
/ Phys. Rev. E (2005)10.1080/0001873031000093582
/ Adv. Phys. (2003){'key': '2023062604033501600_c41a', 'first-page': '321', 'volume': '69', 'year': '2005', 'journal-title': 'Europhys. Lett.'}
/ Europhys. Lett. (2005)10.1063/1.1593020
/ J. Chem. Phys. (2003)10.1088/0953-8984/14/23/201
/ J. Phys.: Condens. Matter (2002)10.1063/1.2192769
/ J. Chem. Phys. (2006)10.1103/PhysRevE.72.041106
/ Phys. Rev. E (2005)10.1103/PhysRevE.73.011504
/ Phys. Rev. E (2006)10.1103/PhysRevLett.81.4915
/ Phys. Rev. Lett. (1998)10.1103/PhysRevE.58.3515
/ Phys. Rev. E (1998)10.1103/PhysRevE.69.061205
/ Phys. Rev. E (2004)10.1103/PhysRevE.70.061506
/ Phys. Rev. E (2004){'key': '2023062604033501600_c49'}
10.1021/jp044559n
/ J. Phys. Chem. B (2005)10.1103/PhysRevLett.90.025503
/ Phys. Rev. Lett. (2003)
Dates
Type | When |
---|---|
Created | 19 years ago (July 26, 2006, 6:05 p.m.) |
Deposited | 2 years, 1 month ago (June 26, 2023, 12:03 a.m.) |
Indexed | 2 weeks, 1 day ago (Aug. 6, 2025, 8:16 a.m.) |
Issued | 19 years ago (July 26, 2006) |
Published | 19 years ago (July 26, 2006) |
Published Online | 19 years ago (July 26, 2006) |
Published Print | 19 years ago (July 28, 2006) |
@article{Saltzman_2006, title={Activated hopping and dynamical fluctuation effects in hard sphere suspensions and fluids}, volume={125}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.2217739}, DOI={10.1063/1.2217739}, number={4}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Saltzman, Erica J. and Schweizer, Kenneth S.}, year={2006}, month=jul }