Crossref journal-article
AIP Publishing
The Journal of Chemical Physics (317)
Abstract

The interaction of water with extended defects such as mono- and diatomic steps at the MgO(100) surface is investigated through first-principles simulations, as a function of water coverage. At variance with flat MgO(100) terraces, water adsorption is always dissociative on mono- and diatomic steps, as well as on MgO(110) surfaces. In most of the equilibrium configurations, the oxygen of the hydroxyl groups is two- or fourfold coordinated, but single-coordinated OH groups can be stabilized at diatomic step edges. The structural properties of the hydroxyl groups are discussed as a function of their coordination numbers and mutual interactions, as well as the surface defect morphology. It is shown that characteristics of water adsorption are primarily driven by the coordination number of the surface acid-base pair where the dissociation occurs. However, the OH groups resulting from water dissociation are also considerably stabilized by the electrostatic interaction with coadsorbed protons. At low coverage such an interaction, considerably stronger than hydrogen bonding, practically hinders any proton diffusion away from its neighboring hydroxyl. The computed adsorption energies allow us to discuss the onset of water desorption from flat MgO(100) terraces, diatomic and monoatomic steps, and from Mg–O divacancy.

Bibliography

Costa, D., Chizallet, C., Ealet, B., Goniakowski, J., & Finocchi, F. (2006). Water on extended and point defects at MgO surfaces. The Journal of Chemical Physics, 125(5).

Authors 5
  1. D. Costa (first)
  2. C. Chizallet (additional)
  3. B. Ealet (additional)
  4. J. Goniakowski (additional)
  5. F. Finocchi (additional)
References 48 Referenced 49
  1. 10.1021/cr990237h / Chem. Rev. (Washington, D.C.) (1999)
  2. 10.1016/S0167-5729(01)00020-6 / Surf. Sci. Rep. (2002)
  3. 10.1016/j.surfrep.2003.09.001 / Surf. Sci. Rep. (2003)
  4. M. Che and A. J.Tench , AERE Report No. R 9971, 1980 (unpublished);
  5. 10.1016/S0360-0564(08)60453-8 / Adv. Catal. (1982)
  6. 10.1016/S0360-0564(02)46024-5 / Adv. Catal. (2001)
  7. 10.1016/S0169-4332(02)01469-1 / Appl. Surf. Sci. (2003)
  8. 10.1103/PhysRevLett.91.196102 / Phys. Rev. Lett. (2003)
  9. 10.1016/S0039-6028(98)00444-0 / Surf. Sci. (1998)
  10. 10.1016/S0039-6028(98)00445-2 / Surf. Sci. (1998)
  11. 10.1021/jp9934275 / J. Phys. Chem. B (2000)
  12. 10.1103/PhysRevLett.81.1271 / Phys. Rev. Lett. (1998)
  13. 10.1103/PhysRevLett.82.3919 / Phys. Rev. Lett. (1999)
  14. 10.1063/1.1287276 / J. Chem. Phys. (2000)
  15. 10.1103/PhysRevB.68.115414 / Phys. Rev. B (2003)
  16. 10.1021/la0117799 / Langmuir (2002)
  17. 10.1103/PhysRevB.62.15406 / Phys. Rev. B (2000)
  18. 10.1021/jp012306d / J. Phys. Chem. B (2002)
  19. 10.1063/1.471993 / J. Chem. Phys. (1996)
  20. 10.1103/PhysRevB.64.125426 / Phys. Rev. B (2001)
  21. 10.1016/S0039-6028(99)00410-0 / Surf. Sci. (1999)
  22. 10.1039/f19888402421 / J. Chem. Soc., Faraday Trans. 1 (1988)
  23. 10.1063/1.467777 / J. Chem. Phys. (1994)
  24. 10.1016/0039-6028(95)00348-7 / Surf. Sci. (1995)
  25. {'key': '2023080104050025700_c23', 'first-page': '8', 'volume': '103', 'year': '1995', 'journal-title': 'J. Chem. Phys.'} / J. Chem. Phys. (1995)
  26. 10.1021/j100047a028 / J. Chem. Phys. (1995)
  27. 10.1016/S0009-2614(99)00909-4 / Chem. Phys. Lett. (1999)
  28. 10.1063/1.1378308 / J. Chem. Phys. (2001)
  29. 10.1016/j.progsurf.2004.05.014 / Prog. Surf. Sci. (2004)
  30. 10.1016/j.susc.2004.07.024 / Surf. Sci. (2004)
  31. 10.1016/S0927-0256(02)00325-7 / Comput. Mater. Sci. (2002)
  32. {'key': '2023080104050025700_c29b'}
  33. 10.1103/PhysRevLett.77.3865 / Phys. Rev. Lett. (1996)
  34. 10.1103/PhysRevB.43.1993 / Phys. Rev. B (1991)
  35. 10.1103/PhysRevB.69.054419 / Phys. Rev. B (2004)
  36. 10.1016/S0021-9517(02)93741-3 / J. Catal. (2002)
  37. 10.1063/1.1681463 / J. Chem. Phys. (1973)
  38. 10.1063/1.438628 / J. Chem. Phys. (1979)
  39. 10.1016/S0039-6028(98)00272-6 / Surf. Sci. (1998)
  40. 10.1016/S0169-4332(03)00620-2 / Appl. Surf. Sci. (2004)
  41. 10.1103/PhysRevB.62.9981 / Phys. Rev. B (2000)
  42. See EPAPS Document No. E-JCPSA6-125-711625 for supplementary material. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubserves/epaps.html).
  43. 10.1016/j.susc.2005.06.092 / Surf. Sci. (2005)
  44. 10.1103/PhysRevB.63.195417 / Phys. Rev. B (2001)
  45. 10.1063/1.469556 / J. Chem. Phys. (1995)
  46. 10.1002/(SICI)1097-461X(1999)71:2<153::AID-QUA4>3.0.CO;2-H / Int. J. Quantum Chem. (1999)
  47. {'key': '2023080104050025700_c46'}
  48. {'key': '2023080104050025700_c47', 'first-page': '187', 'volume-title': 'Acid-Base Interactions: Relevance to Adhesion Science and Technology', 'author': 'Mittal', 'year': '2000'} / Acid-Base Interactions: Relevance to Adhesion Science and Technology by Mittal (2000)
Dates
Type When
Created 19 years ago (Aug. 4, 2006, 9:35 p.m.)
Deposited 7 months, 1 week ago (Jan. 10, 2025, 4:58 a.m.)
Indexed 3 weeks, 2 days ago (July 30, 2025, 6:46 a.m.)
Issued 19 years ago (Aug. 1, 2006)
Published 19 years ago (Aug. 1, 2006)
Published Online 19 years ago (Aug. 1, 2006)
Published Print 19 years ago (Aug. 7, 2006)
Funders 0

None

@article{Costa_2006, title={Water on extended and point defects at MgO surfaces}, volume={125}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.2212407}, DOI={10.1063/1.2212407}, number={5}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Costa, D. and Chizallet, C. and Ealet, B. and Goniakowski, J. and Finocchi, F.}, year={2006}, month=aug }