Crossref journal-article
AIP Publishing
Journal of Applied Physics (317)
Abstract

A variety of magnetic memory devices, including MRAM, spin-torque RAM, plated wire, and bubbles, either are or have been under investigation as candidate “universal memory” devices. Such devices would combine the performance attributes of DRAM with the nonvolatility of a disk drive. This paper examines the past and present magnetic memories from two perspectives: (1) processing and extendability to smaller dimensions, and (2) the memory hierarchy of the applications to which they are directed. From a processing requirement, magnetic memories must converge to the cell sizes of competitive memory technologies, which range from 8F2 for DRAM to 0.5F2 for disk drives, where F is the minimum processing feature. From a memory hierarchy perspective, magnetic memories must balance the advantages of nonvolatility with the market demands for performance and low cost, and must address the application shifts away from classical enterprise storage hierarchy to the now rapidly developing mobile storage needs. The success of magnetic memories will depend on their ability to fulfill the evolving memory hierarchy requirements of a large set of new and nontraditional applications and on their ability to approach the device sizes of competing DRAM and flash devices.

Bibliography

Fontana, R. E., & Hetzler, S. R. (2006). Magnetic memories: Memory hierarchy and processing perspectives (invited). Journal of Applied Physics, 99(8).

Authors 2
  1. R. E. Fontana (first)
  2. S. R. Hetzler (additional)
References 17 Referenced 20
  1. {'year': '2004', 'key': '2023072905392625800_c1'} (2004)
  2. {'year': '2005', 'key': '2023072905392625800_c2'} (2005)
  3. 10.1109/TMAG.2002.988918 / IEEE Trans. Magn. (2002)
  4. {'year': '2003', 'key': '2023072905392625800_c4'} (2003)
  5. {'first-page': '90', 'volume-title': 'Computer Organization and Architecture', 'year': '1987', 'key': '2023072905392625800_c5'} / Computer Organization and Architecture (1987)
  6. {'first-page': '544', 'volume-title': 'Computer Organization and Design', 'year': '1998', 'key': '2023072905392625800_c6'} / Computer Organization and Design (1998)
  7. {'year': '2005', 'key': '2023072905392625800_c7'} (2005)
  8. {'year': '2004', 'key': '2023072905392625800_c8'} (2004)
  9. {'year': '2003', 'key': '2023072905392625800_c9'} (2003)
  10. {'year': '2003', 'key': '2023072905392625800_c10'} (2003)
  11. {'first-page': '578', 'volume-title': 'Digital Integrated Circuits', 'year': '1996', 'key': '2023072905392625800_c11'} / Digital Integrated Circuits (1996)
  12. 10.1147/rd.462.0187 / IBM J. Res. Dev. (2002)
  13. 10.1109/5.622505 / Proc. IEEE (1997)
  14. {'first-page': '110', 'volume-title': 'Magnetic Bubble Technology', 'year': '1980', 'key': '2023072905392625800_c14'} / Magnetic Bubble Technology (1980)
  15. {'key': '2023072905392625800_c15', 'first-page': '17', 'volume': '18', 'year': '2002', 'journal-title': 'IEEE Circuits Devices Mag.'} / IEEE Circuits Devices Mag. (2002)
  16. 10.1109/TNANO.2002.1005424 / IEEE Trans. Nanotechnol. (2002)
  17. R. Denhard, “Field Effect Transistor Memory,” U.S. Patent No. 3,387,286 (1968).
Dates
Type When
Created 19 years, 2 months ago (June 12, 2006, 12:13 p.m.)
Deposited 2 years ago (July 29, 2023, 1:39 a.m.)
Indexed 3 weeks, 3 days ago (July 30, 2025, 6:46 a.m.)
Issued 19 years, 4 months ago (April 15, 2006)
Published 19 years, 4 months ago (April 15, 2006)
Published Online 19 years, 4 months ago (April 19, 2006)
Published Print 19 years, 4 months ago (April 15, 2006)
Funders 0

None

@article{Fontana_2006, title={Magnetic memories: Memory hierarchy and processing perspectives (invited)}, volume={99}, ISSN={1089-7550}, url={http://dx.doi.org/10.1063/1.2162476}, DOI={10.1063/1.2162476}, number={8}, journal={Journal of Applied Physics}, publisher={AIP Publishing}, author={Fontana, R. E. and Hetzler, S. R.}, year={2006}, month=apr }