Abstract
A combination of interpolation methods and local saddle-point search algorithms is probably the most efficient way of finding transition states in chemical reactions. Interpolation methods such as the growing-string method and the nudged-elastic band are able to find an approximation to the minimum-energy pathway and thereby provide a good initial guess for a transition state and imaginary mode connecting both reactant and product states. Since interpolation methods employ usually just a small number of configurations and converge slowly close to the minimum-energy pathway, local methods such as partitioned rational function optimization methods using either exact or approximate Hessians or minimum-mode-following methods such as the dimer or the Lanczos method have to be used to converge to the transition state. A modification to the original dimer method proposed by [Henkelman and Jónnson J. Chem. Phys. 111, 7010 (1999)] is presented, reducing the number of gradient calculations per cycle from six to four gradients or three gradients and one energy, and significantly improves the overall performance of the algorithm on quantum-chemical potential-energy surfaces, where forces are subject to numerical noise. A comparison is made between the dimer methods and the well-established partitioned rational function optimization methods for finding transition states after the use of interpolation methods. Results for 24 different small- to medium-sized chemical reactions covering a wide range of structural types demonstrate that the improved dimer method is an efficient alternative saddle-point search algorithm on medium-sized to large systems and is often even able to find transition states when partitioned rational function optimization methods fail to converge.
References
32
Referenced
829
10.1103/PhysRev.76.1169
/ Phys. Rev. (1949)10.1016/0022-3697(57)90059-8
/ J. Phys. Chem. Solids (1957)10.1063/1.442352
/ J. Chem. Phys. (1981)10.1021/j100238a013
/ J. Phys. Chem. (1983)10.1021/j100247a015
/ J. Phys. Chem. (1985)10.1063/1.458435
/ J. Chem. Phys. (1990)10.1063/1.457316
/ J. Chem. Phys. (1989)10.1002/jcc.540070402
/ J. Comput. Chem. (1986)10.1093/comjnl/13.2.185
/ Comput. J. (1970){'volume-title': 'Nonlinear Programming', 'year': '1970', 'key': '2023072507070945300_c10'}
/ Nonlinear Programming (1970)10.1002/jcc.540150102
/ J. Comput. Chem. (1994)10.1063/1.480097
/ J. Chem. Phys. (1999)10.1103/PhysRevE.62.7723
/ Phys. Rev. E (2000)10.1063/1.1323224
/ J. Chem. Phys. (2000)10.1103/PhysRevLett.72.1124
/ Phys. Rev. Lett. (1994)10.1063/1.1691018
/ J. Chem. Phys. (2004)- W. Ren, Ph.D. thesis, Department of Mathematics, New York University, 2002.
10.1103/PhysRevB.66.052301
/ Phys. Rev. B (2002){'volume-title': 'Density Functional Theory of Atoms and Molecules', 'year': '1989', 'key': '2023072507070945300_c19'}
/ Density Functional Theory of Atoms and Molecules (1989)10.1021/j100096a001
/ J. Phys. Chem. (1994)10.1063/1.469408
/ J. Chem. Phys. (1995)10.1063/1.467146
/ J. Chem. Phys. (1994)10.1016/0009-2614(89)85118-8
/ Chem. Phys. Lett. (1989){'volume-title': 'Methods and Techniques in Computational Chemistry: METECC-95', 'year': '1995', 'author': 'Clementi', 'key': '2023072507070945300_c24'}
/ Methods and Techniques in Computational Chemistry: METECC-95 by Clementi (1995)10.1002/(SICI)1096-987X(199605)17:7<888::AID-JCC12>3.0.CO;2-7
/ J. Comput. Chem. (1996)10.1063/1.454172
/ J. Chem. Phys. (1988)10.1063/1.465995
/ J. Chem. Phys. (1993)10.1063/1.461606
/ J. Chem. Phys. (1991)10.1063/1.1809574
/ J. Chem. Phys. (2004){'year': '2003', 'key': '2023072507070945300_c30'}
(2003){'key': '2023072507070945300_c31', 'first-page': '1857', 'volume': '109', 'year': '2005', 'journal-title': 'J. Phys. Chem. B'}
/ J. Phys. Chem. B (2005){'key': '2023072507070945300_c32', 'first-page': '35', 'volume': '16', 'year': '1969', 'journal-title': 'Rev. Fr. Inform. Rech. Oper.'}
/ Rev. Fr. Inform. Rech. Oper. (1969)
Dates
Type | When |
---|---|
Created | 19 years, 8 months ago (Dec. 8, 2005, 6:03 p.m.) |
Deposited | 2 years, 1 month ago (July 25, 2023, 3:34 a.m.) |
Indexed | 53 minutes ago (Aug. 27, 2025, 9:56 p.m.) |
Issued | 19 years, 8 months ago (Dec. 8, 2005) |
Published | 19 years, 8 months ago (Dec. 8, 2005) |
Published Online | 19 years, 8 months ago (Dec. 12, 2005) |
Published Print | 19 years, 8 months ago (Dec. 8, 2005) |
@article{Heyden_2005, title={Efficient methods for finding transition states in chemical reactions: Comparison of improved dimer method and partitioned rational function optimization method}, volume={123}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.2104507}, DOI={10.1063/1.2104507}, number={22}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Heyden, Andreas and Bell, Alexis T. and Keil, Frerich J.}, year={2005}, month=dec }