Crossref journal-article
AIP Publishing
The Journal of Chemical Physics (317)
Abstract

A combination of interpolation methods and local saddle-point search algorithms is probably the most efficient way of finding transition states in chemical reactions. Interpolation methods such as the growing-string method and the nudged-elastic band are able to find an approximation to the minimum-energy pathway and thereby provide a good initial guess for a transition state and imaginary mode connecting both reactant and product states. Since interpolation methods employ usually just a small number of configurations and converge slowly close to the minimum-energy pathway, local methods such as partitioned rational function optimization methods using either exact or approximate Hessians or minimum-mode-following methods such as the dimer or the Lanczos method have to be used to converge to the transition state. A modification to the original dimer method proposed by [Henkelman and Jónnson J. Chem. Phys. 111, 7010 (1999)] is presented, reducing the number of gradient calculations per cycle from six to four gradients or three gradients and one energy, and significantly improves the overall performance of the algorithm on quantum-chemical potential-energy surfaces, where forces are subject to numerical noise. A comparison is made between the dimer methods and the well-established partitioned rational function optimization methods for finding transition states after the use of interpolation methods. Results for 24 different small- to medium-sized chemical reactions covering a wide range of structural types demonstrate that the improved dimer method is an efficient alternative saddle-point search algorithm on medium-sized to large systems and is often even able to find transition states when partitioned rational function optimization methods fail to converge.

Authors 3
  1. Andreas Heyden (first)
  2. Alexis T. Bell (additional)
  3. Frerich J. Keil (additional)
References 32 Referenced 829
  1. 10.1103/PhysRev.76.1169 / Phys. Rev. (1949)
  2. 10.1016/0022-3697(57)90059-8 / J. Phys. Chem. Solids (1957)
  3. 10.1063/1.442352 / J. Chem. Phys. (1981)
  4. 10.1021/j100238a013 / J. Phys. Chem. (1983)
  5. 10.1021/j100247a015 / J. Phys. Chem. (1985)
  6. 10.1063/1.458435 / J. Chem. Phys. (1990)
  7. 10.1063/1.457316 / J. Chem. Phys. (1989)
  8. 10.1002/jcc.540070402 / J. Comput. Chem. (1986)
  9. 10.1093/comjnl/13.2.185 / Comput. J. (1970)
  10. {'volume-title': 'Nonlinear Programming', 'year': '1970', 'key': '2023072507070945300_c10'} / Nonlinear Programming (1970)
  11. 10.1002/jcc.540150102 / J. Comput. Chem. (1994)
  12. 10.1063/1.480097 / J. Chem. Phys. (1999)
  13. 10.1103/PhysRevE.62.7723 / Phys. Rev. E (2000)
  14. 10.1063/1.1323224 / J. Chem. Phys. (2000)
  15. 10.1103/PhysRevLett.72.1124 / Phys. Rev. Lett. (1994)
  16. 10.1063/1.1691018 / J. Chem. Phys. (2004)
  17. W. Ren, Ph.D. thesis, Department of Mathematics, New York University, 2002.
  18. 10.1103/PhysRevB.66.052301 / Phys. Rev. B (2002)
  19. {'volume-title': 'Density Functional Theory of Atoms and Molecules', 'year': '1989', 'key': '2023072507070945300_c19'} / Density Functional Theory of Atoms and Molecules (1989)
  20. 10.1021/j100096a001 / J. Phys. Chem. (1994)
  21. 10.1063/1.469408 / J. Chem. Phys. (1995)
  22. 10.1063/1.467146 / J. Chem. Phys. (1994)
  23. 10.1016/0009-2614(89)85118-8 / Chem. Phys. Lett. (1989)
  24. {'volume-title': 'Methods and Techniques in Computational Chemistry: METECC-95', 'year': '1995', 'author': 'Clementi', 'key': '2023072507070945300_c24'} / Methods and Techniques in Computational Chemistry: METECC-95 by Clementi (1995)
  25. 10.1002/(SICI)1096-987X(199605)17:7<888::AID-JCC12>3.0.CO;2-7 / J. Comput. Chem. (1996)
  26. 10.1063/1.454172 / J. Chem. Phys. (1988)
  27. 10.1063/1.465995 / J. Chem. Phys. (1993)
  28. 10.1063/1.461606 / J. Chem. Phys. (1991)
  29. 10.1063/1.1809574 / J. Chem. Phys. (2004)
  30. {'year': '2003', 'key': '2023072507070945300_c30'} (2003)
  31. {'key': '2023072507070945300_c31', 'first-page': '1857', 'volume': '109', 'year': '2005', 'journal-title': 'J. Phys. Chem. B'} / J. Phys. Chem. B (2005)
  32. {'key': '2023072507070945300_c32', 'first-page': '35', 'volume': '16', 'year': '1969', 'journal-title': 'Rev. Fr. Inform. Rech. Oper.'} / Rev. Fr. Inform. Rech. Oper. (1969)
Dates
Type When
Created 19 years, 8 months ago (Dec. 8, 2005, 6:03 p.m.)
Deposited 2 years, 1 month ago (July 25, 2023, 3:34 a.m.)
Indexed 53 minutes ago (Aug. 27, 2025, 9:56 p.m.)
Issued 19 years, 8 months ago (Dec. 8, 2005)
Published 19 years, 8 months ago (Dec. 8, 2005)
Published Online 19 years, 8 months ago (Dec. 12, 2005)
Published Print 19 years, 8 months ago (Dec. 8, 2005)
Funders 0

None

@article{Heyden_2005, title={Efficient methods for finding transition states in chemical reactions: Comparison of improved dimer method and partitioned rational function optimization method}, volume={123}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.2104507}, DOI={10.1063/1.2104507}, number={22}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Heyden, Andreas and Bell, Alexis T. and Keil, Frerich J.}, year={2005}, month=dec }