Abstract
The thermochemistry of the RuO42−+MnO4−→RuO4−+MnO42− redox reaction in aqueous solution is studied by separate density-functional-based ab initio molecular-dynamics simulations of the component half reactions RuO42−→RuO4−+e− and MnO42−→MnO4−+e−. We compare the results of a recently developed grand-canonical method for the computation of oxidation free energies to the predictions by the energy-gap relations of the Marcus theory that can be assumed to apply to these reactions. The calculated redox potentials are in good agreement. The subtraction of the half-reaction free energies gives an estimate of the free energy of the full reaction. The result obtained from the grand-canonical method is −0.4eV, while the application of the Marcus theory gives −0.3eV. These should be compared to the experimental value of 0.0eV. Size effects, in response to increasing the number of water molecules in the periodic model system from 30 to 48, are found to be small (≈0.1eV). The link to the Marcus theory also has enabled us to compute reorganization free energies for oxidation. For both the MnO42− and RuO42− redox reactions we find the same reorganization free energy of 0.8eV (1.0eV in the larger system). The results for the free energies and further analysis of solvation and electronic structure confirm that these two tetrahedral oxoanions show very similar behavior in solution in spite of the central transition-metal atoms occupying a different row and column in the periodic table.
References
51
Referenced
91
10.1063/1.1742723
/ J. Chem. Phys. (1956)10.1063/1.1696792
/ J. Chem. Phys. (1965)10.1021/ja0390754
/ J. Am. Chem. Soc. (2004)10.1021/jp036610d
/ J. Phys. Chem. B (2004)10.1021/jp0455879
/ J. Phys. Chem. B (2005)10.1103/PhysRevLett.55.2471
/ Phys. Rev. Lett. (1985){'key': '2023073021464908200_c7'}
{'volume-title': 'J. Chem. Phys.', 'key': '2023073021464908200_c8'}
/ J. Chem. Phys.10.1063/1.466397
/ J. Chem. Phys. (1994)10.1021/ja035498u
/ J. Am. Chem. Soc. (2003){'edition': '2nd ed.', 'volume-title': 'Electrochemical Methods', 'year': '2001', 'key': '2023073021464908200_c11'}
/ Electrochemical Methods (2001)10.1103/PhysRevLett.88.213002
/ Phys. Rev. Lett. (2002)10.1146/annurev.pc.15.100164.001103
/ Annu. Rev. Phys. Chem. (1964)10.1021/j100209a016
/ J. Phys. Chem. (1982)10.1021/j100357a005
/ J. Phys. Chem. (1989)10.1063/1.473037
/ J. Chem. Phys. (1997)10.1021/ja029595j
/ J. Am. Chem. Soc. (2003)10.1063/1.1818676
/ J. Chem. Phys. (2004)10.1021/jp983195u
/ J. Phys. Chem. A (1999)10.1021/jp011239k
/ J. Phys. Chem. A (2001)10.1039/b501603g
/ Phys. Chem. Chem. Phys. (2005)10.1063/1.1740409
/ J. Chem. Phys. (1954){'edition': '2nd ed.', 'volume-title': 'Understanding Molecular Simulation', 'year': '2002', 'key': '2023073021464908200_c23'}
/ Understanding Molecular Simulation (2002)10.1103/PhysRevB.43.1993
/ Phys. Rev. B (1991)10.1021/om030104t
/ Organometallics (2003)10.1103/PhysRevB.26.1738
/ Phys. Rev. B (1982)10.1103/PhysRevLett.48.1425
/ Phys. Rev. Lett. (1982)10.1103/PhysRevA.38.3098
/ Phys. Rev. A (1988)10.1103/PhysRevB.37.785
/ Phys. Rev. B (1988)10.1021/ja00826a065
/ J. Am. Chem. Soc. (1974)10.1016/S0009-2614(99)00976-8
/ Chem. Phys. Lett. (1999){'volume-title': 'J. Chem. Soc. Dalton Trans.', 'key': '2023073021464908200_c32', 'first-page': '1537'}
/ J. Chem. Soc. Dalton Trans.10.3891/acta.chem.scand.21-0737
/ Acta Chem. Scand. (1947-1973) (1967)10.1002/zaac.19905910110
/ Z. Anorg. Allg. Chem. (1990)10.1021/ic50049a015
/ Inorg. Chem. (1967)10.1021/ic50049a016
/ Inorg. Chem. (1967)10.1016/S0166-1280(00)00426-7
/ J. Mol. Struct. (2000)10.1103/PhysRevLett.90.226403
/ Phys. Rev. Lett. (2003)10.1016/S1010-6030(98)00349-9
/ J. Photochem. Photobiol., A (1998)10.1021/ja01140a007
/ J. Am. Chem. Soc. (1952)10.1021/ja01641a072
/ J. Am. Chem. Soc. (1954){'key': '2023073021464908200_c42', 'first-page': '1636', 'volume': '5', 'year': '1966', 'journal-title': 'Inorg. Chem.'}
/ Inorg. Chem. (1966){'volume-title': 'J. Chem. Soc.', 'key': '2023073021464908200_c43', 'first-page': '3373'}
/ J. Chem. Soc.10.1143/PTP.13.160
/ Prog. Theor. Phys. (1955){'volume-title': 'Electronic Structure and Properties of Transition Metal Compounds', 'year': '1996', 'key': '2023073021464908200_c45'}
/ Electronic Structure and Properties of Transition Metal Compounds (1996)10.1021/jp951011v
/ J. Phys. Chem. (1996)10.1021/jp982195r
/ J. Phys. Chem. A (1998)10.1063/1.476320
/ J. Chem. Phys. (1998)10.1021/ja012638w
/ J. Am. Chem. Soc. (2002)10.1021/ja0212157
/ J. Am. Chem. Soc. (2003)10.1021/ja0401040
/ J. Am. Chem. Soc. (2004)
Dates
Type | When |
---|---|
Created | 20 years, 2 months ago (June 17, 2005, 6:15 p.m.) |
Deposited | 2 years ago (July 30, 2023, 5:46 p.m.) |
Indexed | 4 weeks, 2 days ago (July 30, 2025, 6:45 a.m.) |
Issued | 20 years, 2 months ago (June 15, 2005) |
Published | 20 years, 2 months ago (June 15, 2005) |
Published Online | 20 years, 2 months ago (June 20, 2005) |
Published Print | 20 years, 2 months ago (June 15, 2005) |
@article{Tateyama_2005, title={Density-functional molecular-dynamics study of the redox reactions of two anionic, aqueous transition-metal complexes}, volume={122}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.1938192}, DOI={10.1063/1.1938192}, number={23}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Tateyama, Yoshitaka and Blumberger, Jochen and Sprik, Michiel and Tavernelli, Ivano}, year={2005}, month=jun }