Abstract
The use of doped wide-gap charge transport layers with high conductivity and low absorption in the visible range enables one to achieve high internal quantum efficiencies and to optimize the devices with respect to optical interference effects. Here, it is shown that this architecture is particularly useful for stacking several cells on top of each other. The doping eases the recombination of the majority carriers at the interface between the cells, whereas the recombination centers are hidden for excitons and minority carriers. By stacking two p-i-n cells both with a phthalocyanine-fullerene blend as photoactive layer, a power efficiency of up to 3.8% at simulated AM1.5 illumination as compared to 2.1% for the respective single p-i-n cell has been achieved. Numerical simulations of the optical field distribution based on the transfer-matrix formalism are applied for optimization. The concept paves the way to even higher efficiencies by stacking several p-i-n cells with different photoactive materials that together cover the full visible spectrum.
References
21
Referenced
181
10.1063/1.96937
/ Appl. Phys. Lett. (1986){'key': '2023070300372537200_c2', 'first-page': '327', 'volume': '1990', 'year': '1990', 'journal-title': 'Chem. Lett.'}
/ Chem. Lett. (1990)10.1002/adma.19910030303
/ Adv. Mater. (Weinheim, Ger.) (1991)10.1063/1.1345834
/ Appl. Phys. Lett. (2001)10.1063/1.1534621
/ J. Appl. Phys. (2003)10.1063/1.1394920
/ J. Appl. Phys. (2001)10.1063/1.104423
/ Appl. Phys. Lett. (1991)10.1063/1.352274
/ J. Appl. Phys. (1992)10.1016/S0927-0248(99)00099-9
/ Sol. Energy Mater. Sol. Cells (2000)10.1007/978-3-662-05187-0
/ Organic Photovoltaics: Concepts and Realization by Brabec (2003)10.1038/nmat978
/ Nat. Mater. (2003)10.1063/1.1457531
/ Appl. Phys. Lett. (2002){'key': '2023070300372537200_c13', 'first-page': '515', 'volume': '451', 'year': '2004', 'journal-title': 'Thin Solid Films'}
/ Thin Solid Films (2004)10.1007/s00339-003-2494-9
/ Appl. Phys. A: Mater. Sci. Process. (2004)10.1016/j.orgel.2003.11.005
/ Org. Electron. (2004)10.1063/1.370757
/ J. Appl. Phys. (1999){'key': '2023070300372537200_c17', 'first-page': '589', 'volume': '451', 'year': '2004', 'journal-title': 'Thin Solid Films'}
/ Thin Solid Films (2004)10.1016/S0927-0248(00)00022-2
/ Sol. Energy Mater. Sol. Cells (2000)10.1103/PhysRevB.64.195208
/ Phys. Rev. B (2001)10.1063/1.1583872
/ Appl. Phys. Lett. (2003)10.1063/1.1755833
/ Appl. Phys. Lett. (2004)
Dates
Type | When |
---|---|
Created | 20 years, 2 months ago (June 6, 2005, 8:20 p.m.) |
Deposited | 2 years, 1 month ago (July 2, 2023, 8:37 p.m.) |
Indexed | 1 month ago (July 30, 2025, 6:44 a.m.) |
Issued | 20 years, 2 months ago (June 7, 2005) |
Published | 20 years, 2 months ago (June 7, 2005) |
Published Online | 20 years, 2 months ago (June 7, 2005) |
Published Print | 20 years, 2 months ago (June 13, 2005) |
@article{Drechsel_2005, title={Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers}, volume={86}, ISSN={1077-3118}, url={http://dx.doi.org/10.1063/1.1935771}, DOI={10.1063/1.1935771}, number={24}, journal={Applied Physics Letters}, publisher={AIP Publishing}, author={Drechsel, J. and Männig, B. and Kozlowski, F. and Pfeiffer, M. and Leo, K. and Hoppe, H.}, year={2005}, month=jun }