Crossref journal-article
AIP Publishing
The Journal of Chemical Physics (317)
Abstract

The previously developed DFT-SAPT approach, which combines symmetry-adapted intermolecular perturbation theory (SAPT) with a density-functional theory (DFT) representation of the monomers, has been implemented by using density fitting of two-electron objects. This approach, termed DF-DFT-SAPT, scales with the fifth power of the molecular size and with the third power upon increase of the basis set size for a given dimer, thus drastically reducing the cost of the conventional DFT-SAPT method. The accuracy of the density fitting approximation has been tested for the ethyne dimer. It has been found that the errors in the interaction energies due to density fitting are below 10−3 kcal/mol with suitable auxiliary basis sets and thus one or two orders of magnitude smaller than the errors due to the use of a limited atomic orbital basis set. An investigation of three prominent structures of the benzene dimer, namely, the T shaped, parallel displaced, and sandwich geometries, employing basis sets of up to augmented quadruple-ζ quality shows that DF-DFT-SAPT outperforms second-order Møller-Plesset theory (MP2) and gives total interaction energies which are close to the best estimates infered from combining the results of MP2 and coupled-cluster theory with single, double, and perturbative triple excitations.

Bibliography

Heßelmann, A., Jansen, G., & Schütz, M. (2004). Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: A new efficient method to study intermolecular interaction energies. The Journal of Chemical Physics, 122(1).

Authors 3
  1. A. Heßelmann (first)
  2. G. Jansen (additional)
  3. M. Schütz (additional)
References 57 Referenced 556
  1. 10.1021/cr990048z / Chem. Rev. (Washington, D.C.) (2000)
  2. 10.1039/b309468e / Phys. Chem. Chem. Phys. (2003)
  3. {'key': '2023062610080837400_r3', 'first-page': '424', 'volume': '334', 'year': '1999', 'journal-title': 'Chem. Phys. Lett.'} / Chem. Phys. Lett. (1999)
  4. 10.1016/S0009-2614(00)01328-2 / Chem. Phys. Lett. (2001)
  5. 10.1016/S0009-2614(99)01168-9 / Chem. Phys. Lett. (1999)
  6. 10.1021/jp961239y / J. Phys. Chem. (1996)
  7. 10.1063/1.472140 / J. Chem. Phys. (1996)
  8. 10.1016/S0009-2614(00)00170-6 / Chem. Phys. Lett. (2000)
  9. 10.1063/1.1476010 / J. Chem. Phys. (2002)
  10. 10.1063/1.1344891 / J. Chem. Phys. (2001)
  11. {'key': '2023062610080837400_r11'}
  12. {'key': '2023062610080837400_r12'}
  13. 10.1021/cr00031a008 / Chem. Rev. (Washington, D.C.) (1994)
  14. {'key': '2023062610080837400_r14'}
  15. 10.1063/1.479118 / J. Chem. Phys. (1999)
  16. 10.1063/1.481120 / J. Chem. Phys. (2000)
  17. 10.1021/jp0112774 / J. Phys. Chem. A (2001)
  18. 10.1021/jp003883p / J. Phys. Chem. A (2001)
  19. 10.1016/S0009-2614(02)00538-9 / Chem. Phys. Lett. (2002)
  20. 10.1016/S0009-2614(02)01097-7 / Chem. Phys. Lett. (2002)
  21. 10.1016/S0009-2614(02)01796-7 / Chem. Phys. Lett. (2003)
  22. 10.1039/B310529F / Phys. Chem. Chem. Phys. (2003)
  23. 10.1016/S0009-2614(02)00533-X / Chem. Phys. Lett. (2002)
  24. {'key': '2023062610080837400_r24'}
  25. 10.1016/0301-0104(73)80059-X / Chem. Phys. (1973)
  26. 10.1063/1.1679012 / J. Chem. Phys. (1973)
  27. 10.1039/B304550A / Phys. Chem. Chem. Phys. (2003)
  28. 10.1063/1.1760747 / J. Chem. Phys. (2004)
  29. 10.1063/1.1564816 / J. Chem. Phys. (2003)
  30. 10.1103/PhysRevLett.91.033201 / Phys. Rev. Lett. (2003)
  31. 10.1002/qua.560100208 / Int. J. Quantum Chem. (1976)
  32. {'key': '2023062610080837400_r32'}
  33. 10.1080/00268978000100661 / Mol. Phys. (1980)
  34. 10.1007/BF00554513 / Theor. Chim. Acta (1977)
  35. 10.1080/00268978500102021 / Mol. Phys. (1985)
  36. {'key': '2023062610080837400_r36'}
  37. 10.1063/1.477922 / J. Chem. Phys. (1999)
  38. {'key': '2023062610080837400_r38'}
  39. 10.1021/ja025896h / J. Am. Chem. Soc. (2002)
  40. 10.1021/jp994408y / J. Phys. Chem. A (2000)
  41. 10.1021/jp992605r / J. Phys. Chem. A (1999)
  42. 10.1021/jp9940405 / J. Phys. Chem. A (2000)
  43. 10.1063/1.462569 / J. Chem. Phys. (1992)
  44. 10.1063/1.475429 / J. Chem. Phys. (1998)
  45. 10.1039/b204199p / Phys. Chem. Chem. Phys. (2002)
  46. 10.1063/1.1445115 / J. Chem. Phys. (2002)
  47. 10.1063/1.478522 / J. Chem. Phys. (1999)
  48. 10.1103/PhysRevLett.77.3865 / Phys. Rev. Lett. (1996)
  49. 10.1103/PhysRevA.49.2421 / Phys. Rev. A (1994)
  50. 10.1063/1.1327260 / J. Chem. Phys. (2001)
  51. 10.1063/1.1398093 / J. Chem. Phys. (2001)
  52. 10.1080/002689797171841 / Mol. Phys. (1997)
  53. 10.1063/1.481544 / J. Chem. Phys. (2000)
  54. 10.1063/1.1759319 / J. Chem. Phys. (2004)
  55. 10.1021/jp0469517 / J. Phys. Chem. A (2004)
  56. 10.1063/1.481309 / J. Chem. Phys. (2000)
  57. 10.1016/0009-2614(93)85670-J / Chem. Phys. Lett. (1993)
Dates
Type When
Created 20 years, 7 months ago (Jan. 15, 2005, 10:50 a.m.)
Deposited 2 years, 2 months ago (June 26, 2023, 9:59 a.m.)
Indexed 3 days, 22 hours ago (Aug. 30, 2025, 12:33 p.m.)
Issued 20 years, 8 months ago (Dec. 13, 2004)
Published 20 years, 8 months ago (Dec. 13, 2004)
Published Online 20 years, 8 months ago (Dec. 13, 2004)
Published Print 20 years, 8 months ago (Jan. 1, 2005)
Funders 0

None

@article{He_elmann_2004, title={Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: A new efficient method to study intermolecular interaction energies}, volume={122}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.1824898}, DOI={10.1063/1.1824898}, number={1}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Heßelmann, A. and Jansen, G. and Schütz, M.}, year={2004}, month=dec }