Crossref journal-article
AIP Publishing
The Journal of Chemical Physics (317)
Abstract

A new formulation of the radius of gyration of a random-flight chain is presented here. The three independent orthogonal components of the radius of gyration and their associated distribution functions are deduced from the usual model. The properties of the distribution functions are discussed and they are numerially evaluated to a third-order approximation. An alternate empirical distribution function is presented and its properties are analyzed.

Bibliography

Forsman, W. C., & Hughes, R. E. (1963). Radii of Gyration for Random-Flight Chains. The Journal of Chemical Physics, 38(9), 2118–2123.

Authors 2 University of Pennsylvania
  1. W. C. Forsman (first) University of Pennsylvania
  2. R. E. Hughes (additional) University of Pennsylvania
References 8 Referenced 56
  1. {'key': '2024020821262881100_r1'}
  2. {'key': '2024020821262881100_r2'}
  3. 10.1002/macp.1960.020350103 / Makromol. Chem. (1960)
  4. 10.1063/1.1699180 / J. Chem. Phys. (1953)
  5. {'key': '2024020821262881100_r5'}
  6. {'key': '2024020821262881100_r6'}
  7. 10.1063/1.1732501 / J. Chem. Phys. (1962)
  8. 10.1063/1.1733943 / J. Chem. Phys. (1963)
Dates
Type When
Created 20 years, 7 months ago (Jan. 9, 2005, 1:59 a.m.)
Deposited 1 year, 6 months ago (Feb. 8, 2024, 4:26 p.m.)
Indexed 1 year, 6 months ago (Feb. 11, 2024, 6:41 a.m.)
Issued 62 years, 3 months ago (May 1, 1963)
Published 62 years, 3 months ago (May 1, 1963)
Published Print 62 years, 3 months ago (May 1, 1963)
Funders 0

None

@article{Forsman_1963, title={Radii of Gyration for Random-Flight Chains}, volume={38}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.1733942}, DOI={10.1063/1.1733942}, number={9}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Forsman, W. C. and Hughes, R. E.}, year={1963}, month=may, pages={2118–2123} }