Abstract
We derive and discuss a formula, due to Magnus, for the exponential representation of the operator solution to Schrödinger's equation when the Hamiltonian is time dependent. The formula gives a unitary time-displacement operator in every order of approximation. We study the usefulness of the first- and second-order approximations for the kind of problem posed by the semiclassical theory of inelastic collisions, basing our discussion on two exactly soluble two-state problems. The algebraic structure of the Magnus formula is in itself useful; to illustrate this, we solve exactly the problems of the linearly forced harmonic oscillator and the harmonic oscillator with time-dependent force constant.
References
27
Referenced
511
{'key': '2024020900580504300_r1a', 'first-page': '43', 'volume': '25', 'year': '1963', 'journal-title': 'Progr. Theoret. Phys. (Kyoto) Suppl.'}
/ Progr. Theoret. Phys. (Kyoto) Suppl. (1963)10.1063/1.1704297
/ J. Math. Phys. (1965)10.1103/PhysRev.75.486
/ Phys. Rev. (1949)10.1103/PhysRev.84.108
/ Phys. Rev. (1951)10.1002/cpa.3160070404
/ Commun. Pure Appl. Math. (1954){'key': '2024020900580504300_r5'}
{'key': '2024020900580504300_r6'}
{'key': '2024020900580504300_r7', 'first-page': '140', 'volume': '36', 'year': '1963', 'journal-title': 'Helv. Phys. Acta'}
/ Helv. Phys. Acta (1963){'key': '2024020900580504300_r8'}
{'key': '2024020900580504300_r9'}
{'key': '2024020900580504300_r10'}
10.1103/RevModPhys.20.367
/ Rev. Mod. Phys. (1948)10.1017/S030500410002524X
/ Proc. Cambridge Phil. Soc. (1949)10.1139/p58-038
/ Can. J. Phys. (1958)10.1063/1.1696777
/ J. Chem. Phys. (1965){'key': '2024020900580504300_r14'}
{'key': '2024020900580504300_r15'}
10.1103/RevModPhys.20.367
/ Rev. Mod. Phys. (1948)10.1103/PhysRev.81.848
/ Phys. Rev. (1951){'key': '2024020900580504300_r17'}
10.1063/1.1703636
/ J. Math. Phys. (1960)10.1103/RevModPhys.33.79
/ Rev. Mod. Phys. (1961){'key': '2024020900580504300_r20'}
{'key': '2024020900580504300_r21'}
10.1103/PhysRev.40.502
/ Phys. Rev. (1932)10.1063/1.1724862
/ J. Chem. Phys. (1964){'key': '2024020900580504300_r24'}
Dates
Type | When |
---|---|
Created | 20 years, 7 months ago (Jan. 9, 2005, 3:17 a.m.) |
Deposited | 1 year, 6 months ago (Feb. 8, 2024, 7:58 p.m.) |
Indexed | 2 months, 3 weeks ago (June 10, 2025, 2:44 p.m.) |
Issued | 59 years, 3 months ago (May 15, 1966) |
Published | 59 years, 3 months ago (May 15, 1966) |
Published Print | 59 years, 3 months ago (May 15, 1966) |
@article{Pechukas_1966, title={On the Exponential Form of Time-Displacement Operators in Quantum Mechanics}, volume={44}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.1726550}, DOI={10.1063/1.1726550}, number={10}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Pechukas, Philip and Light, John C.}, year={1966}, month=may, pages={3897–3912} }