Crossref journal-article
AIP Publishing
The Journal of Chemical Physics (317)
Abstract

The outlines of a theory of elastic loss in cross-linked polymers are developed on the basis of the ideas underlying the theory of dielectric loss of Fuoss and the writer and the three-dimensional network model of rubber structure proposed by James and Guth. The relaxation time distribution function for elastic loss is given in the approximation of free internal rotation of chain segments of the net. The influence of intermolecular hindering torques and network restraints on the relaxation time spectrum is discussed, but explicit calculations are postponed for a later report.

Bibliography

Kirkwood, J. G. (1946). Elastic Loss and Relaxation Times in Cross-Linked Polymers. The Journal of Chemical Physics, 14(2), 51–56.

Authors 1
  1. John G. Kirkwood (first)
References 10 Referenced 40
  1. 10.1063/1.1750905 / J. Chem. Phys. (1941)
  2. 10.1007/BF01522052 / Monats. f. Chemie (1934)
  3. 10.1007/BF01451143 / Kolloid Zeits. (1936)
  4. 10.1063/1.1723785 / J. Chem. Phys. (1943)
  5. 10.1063/1.1723668 / J. Chem. Phys. (1942)
  6. 10.1021/cr60110a002 / Chem. Rev. (1944)
  7. 10.1039/tf9444000059 / Trans. Faraday Soc. (1944)
  8. 10.1063/1.1723960 / J. Chem. Phys. (1944)
  9. 10.1103/RevModPhys.14.12 / Rev. Mod. Phys. (1942)
  10. 10.1021/ja01868a059 / J. Am. Chem. Soc. (1940)
Dates
Type When
Created 20 years, 7 months ago (Jan. 5, 2005, 7:16 p.m.)
Deposited 1 year, 6 months ago (Feb. 8, 2024, 7:45 a.m.)
Indexed 2 months, 1 week ago (June 20, 2025, 6:02 p.m.)
Issued 79 years, 7 months ago (Feb. 1, 1946)
Published 79 years, 7 months ago (Feb. 1, 1946)
Published Print 79 years, 7 months ago (Feb. 1, 1946)
Funders 0

None

@article{Kirkwood_1946, title={Elastic Loss and Relaxation Times in Cross-Linked Polymers}, volume={14}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.1724105}, DOI={10.1063/1.1724105}, number={2}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Kirkwood, John G.}, year={1946}, month=feb, pages={51–56} }