Crossref journal-article
AIP Publishing
Journal of Mathematical Physics (317)
Abstract

For eigenvalue problems in which the secular determinant has tridiagonal form, e.g., the rigid asymmetric rotor; the secular equation may be written in the form f(λ′)=0, where f(λ′) is a continued fraction and λ′ an eigenvalue. Furthermore, if the secular problem is of nth order, then the continued fraction f(λ′) may be developed in n different ways. Since the eigenvalues are roots of a function f(λ), it is convenient to find the eigenvalues by means of the Newton-Raphson iterative procedure. This requires that the derivative of f(λ) with respect to λ(f′(λ)) be determined. An exact expression for f′(λ) is derived and it is shown that f′(λ′) is in fact the norm of the eigenvector belonging to the eigenvalue λ′. A simple recursion formula, in continued fraction form, for the eigenvector elements is also derived. The Newton-Raphson procedure is further shown to be equivalent to the variational method for iterative calculation of eigenvalues. The former procedure has, however, the advantage of bypassing the necessity of solving a set of simultaneous equations. Advantage is taken of the relation between f′(λ′) and the eigenvector of λ′ to formulate a reasonable criterion for choosing the best possible development of f(λ) is order to avoid convergence to an undesired root of f(λ).

Bibliography

Swalen, J. D., & Pierce, L. (1961). Remarks on the Continued Fraction Calculation of Eigenvalues and Eigenvectors. Journal of Mathematical Physics, 2(5), 736–739.

Authors 2
  1. Jerome D. Swalen (first)
  2. Louis Pierce (additional)
References 16 Referenced 26
  1. 10.1063/1.1723778 / J. Chem. Phys. (1943)
  2. {'key': '2024020704260347800_r2'}
  3. 10.1103/RevModPhys.31.841 / Revs. Modern Phys. (1959)
  4. {'key': '2024020704260347800_r3'}
  5. 10.1063/1.1742543 / J. Chem. Phys. (1956)
  6. {'key': '2024020704260347800_r5'}
  7. {'key': '2024020704260347800_r6'}
  8. {'key': '2024020704260347800_r6a'}
  9. 10.1145/320881.320886 / J. Assoc. Comp. Mach. (1957)
  10. {'key': '2024020704260347800_r8'}
  11. {'key': '2024020704260347800_r9', 'first-page': '1975', 'volume': '20', 'year': '1952', 'journal-title': 'J. Chem. Phys.'} / J. Chem. Phys. (1952)
  12. {'key': '2024020704260347800_r10'}
  13. {'key': '2024020704260347800_r10a'}
  14. {'key': '2024020704260347800_r10b'}
  15. {'key': '2024020704260347800_r11', 'first-page': '181', 'volume': '16', 'year': '1959', 'journal-title': 'Arkiv Fysik'} / Arkiv Fysik (1959)
  16. 10.1063/1.1744588 / J. Chem. Phys. (1958)
Dates
Type When
Created 20 years, 7 months ago (Jan. 6, 2005, 12:32 p.m.)
Deposited 1 year, 6 months ago (Feb. 7, 2024, 2:21 a.m.)
Indexed 1 year, 6 months ago (Feb. 9, 2024, 8:40 a.m.)
Issued 63 years, 11 months ago (Sept. 1, 1961)
Published 63 years, 11 months ago (Sept. 1, 1961)
Published Print 63 years, 11 months ago (Sept. 1, 1961)
Funders 0

None

@article{Swalen_1961, title={Remarks on the Continued Fraction Calculation of Eigenvalues and Eigenvectors}, volume={2}, ISSN={1089-7658}, url={http://dx.doi.org/10.1063/1.1703766}, DOI={10.1063/1.1703766}, number={5}, journal={Journal of Mathematical Physics}, publisher={AIP Publishing}, author={Swalen, Jerome D. and Pierce, Louis}, year={1961}, month=sep, pages={736–739} }