Abstract
A rate equation is proposed to govern the variation of the effective turbulent viscosity. The effects of generation, convection, diffusion, and decay are each represented by appropriate terms leaving only two empirical constants to be determined by experiment. This rate equation together with the equations of motion form a closed system applicable to quasiparallel turbulent shear flows. For an incompressible turbulent boundary layer with zero pressure gradient, solutions were obtained by assuming local similarity and a linear growth of the boundary-layer thickness. Another problem, the turbulent-nonturbulent interface at the outer edge of the boundary layer was treated by using the further assumption that the large scale motion of the interface has no significant contribution to the Reynolds stress. It can be shown that for a nearly homogeneous domain, Prandtl's mixing length theory is a limiting case of the present theory.
References
24
Referenced
120
{'key': '2023072801310752000_r1', 'first-page': '1', 'volume': 'A215', 'year': '1915', 'journal-title': 'Phil. Trans. Roy. Soc. London'}
/ Phil. Trans. Roy. Soc. London (1915)10.1002/zamm.19250050212
/ Z. Angew. Math. Mech. (1925){'key': '2023072801310752000_r3'}
{'key': '2023072801310752000_r4'}
10.1017/S0022112067000096
/ J. Fluid Mech. (1967)10.1017/S0022112067002319
/ J. Fluid Mech. (1967)10.1063/1.1762039
/ Phys. Fluids (1967){'key': '2023072801310752000_r8'}
{'key': '2023072801310752000_r9', 'first-page': '683', 'volume': '10', 'year': '1965', 'journal-title': 'Bull Am. Phys. Soc.'}
/ Bull Am. Phys. Soc. (1965){'key': '2023072801310752000_r10', 'first-page': '418', 'volume': 'A209', 'year': '1951', 'journal-title': 'Proc. Roy. Soc. (London)'}
/ Proc. Roy. Soc. (London) (1951){'key': '2023072801310752000_r11'}
{'key': '2023072801310752000_r12'}
{'key': '2023072801310752000_r13'}
10.1017/S0305004100026724
/ Proc. Cambridge Phil. Soc. (1951){'key': '2023072801310752000_r15'}
{'key': '2023072801310752000_r16'}
{'key': '2023072801310752000_r17'}
10.1017/S0022112066000363
/ J. Fluid Mech. (1966){'key': '2023072801310752000_r19'}
{'key': '2023072801310752000_r20'}
{'key': '2023072801310752000_r21', 'first-page': '1950', 'volume': '7', 'year': '1964', 'journal-title': 'Phys. Fluids'}
/ Phys. Fluids (1964){'key': '2023072801310752000_r22'}
{'key': '2023072801310752000_r23', 'first-page': '2', 'volume': '21', 'year': '1954', 'journal-title': 'J. Aeron. Sci.'}
/ J. Aeron. Sci. (1954){'key': '2023072801310752000_r24', 'first-page': '827', 'volume': '13', 'year': '1968', 'journal-title': 'Bull. Am. Phys. Soc.'}
/ Bull. Am. Phys. Soc. (1968)
Dates
Type | When |
---|---|
Created | 21 years, 6 months ago (Feb. 17, 2004, 9:44 a.m.) |
Deposited | 2 years, 1 month ago (July 27, 2023, 9:31 p.m.) |
Indexed | 2 months ago (July 1, 2025, 5:45 a.m.) |
Issued | 56 years, 6 months ago (March 1, 1969) |
Published | 56 years, 6 months ago (March 1, 1969) |
Published Online | 21 years, 11 months ago (Sept. 18, 2003) |
Published Print | 56 years, 6 months ago (March 1, 1969) |
@article{Nee_1969, title={Simple Phenomenological Theory of Turbulent Shear Flows}, volume={12}, ISSN={0031-9171}, url={http://dx.doi.org/10.1063/1.1692510}, DOI={10.1063/1.1692510}, number={3}, journal={The Physics of Fluids}, publisher={AIP Publishing}, author={Nee, Victor W. and Kovasznay, Leslie S. G.}, year={1969}, month=mar, pages={473–484} }