Abstract
The techniques of many-body Green's function theory have been applied to the calculation of properties of the lithium atom. Using basis set expansion techniques and a second-order expansion of the self-energy, Dyson's equation was solved, and the first-order reduced density matrix and the first ionization potential for the lithium ground state were computed. The natural spin orbitals of s symmetry were in excellent argeement with those computed from wavefunctions. The ionization potential was within 0.01 eV of the exact experimental result.
References
13
Referenced
27
10.1063/1.1671446
/ J. Chem. Phys. (1969)10.1063/1.1678374
/ J. Chem. Phys. (1972)10.1088/0034-4885/27/1/303
/ Rept. Progr. Phys. (1964){'key': '2024020910113192700_r3a', 'first-page': '288', 'volume': '7', 'year': '1971', 'journal-title': 'Advances in Atomic and Molecular Physics'}
/ Advances in Atomic and Molecular Physics (1971)10.1103/PhysRev.171.54
/ Phys. Rev. (1968)10.1103/PhysRev.160.44
/ Phys. Rev. (1967)10.1103/PhysRevA.1.855
/ Phys. Rev. A (1970)10.1103/PhysRev.97.1474
/ Phys. Rev. (1955)10.1103/PhysRev.136.B896
/ Phys. Rev. (1964)10.1103/PhysRev.174.1
/ Phys. Rev. (1968)10.1103/PhysRev.131.684
/ Phys. Rev. (1963)10.1103/PhysRev.178.137
/ Phys. Rev. (1969)10.1103/PhysRev.169.49
/ Phys. Rev. (1968)
Dates
Type | When |
---|---|
Created | 21 years, 6 months ago (Feb. 4, 2004, 5:30 p.m.) |
Deposited | 1 year, 6 months ago (Feb. 9, 2024, 6:11 a.m.) |
Indexed | 1 year, 6 months ago (Feb. 9, 2024, 3:42 p.m.) |
Issued | 52 years, 5 months ago (March 1, 1973) |
Published | 52 years, 5 months ago (March 1, 1973) |
Published Print | 52 years, 5 months ago (March 1, 1973) |
@article{Reinhardt_1973, title={Application of the many-body Green’s function formalism to the lithium atom}, volume={58}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.1679481}, DOI={10.1063/1.1679481}, number={5}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Reinhardt, William P. and Smith, Jeffrey B.}, year={1973}, month=mar, pages={2148–2152} }