Crossref journal-article
AIP Publishing
Journal of Applied Physics (317)
Abstract

An electrical contact resistance (ECR) theory is presented for conductive and rough (fractal) surfaces separated by a thin insulating film, which is treated as an energy barrier that impedes current flow due to the electric-tunnel effect. The analysis yields insight into the effects of film properties, current flow, surface topography, mechanical properties, and contact load on the ECR. It is shown that the variation of ECR with the contact load is less pronounced than that observed in the absence of an insulating layer due to the intrinsic voltage dependence of the tunnel resistance and the associated voltage compensation mechanism. The effect of nonohmic behavior on the relationships of the ECR with the contact load and the real contact area is discussed and results are compared with approximate analytical relationships developed herein. The relationship between the real contact area and the ECR depends on the current intensity and film properties and is independent of the surface topography and mechanical properties. Approaches for determining the surface roughness, mechanical properties, insulating film properties, and real contact area from ECR measurements are interpreted in light of the theory developed.

Bibliography

Kogut, L., & Komvopoulos, K. (2004). Electrical contact resistance theory for conductive rough surfaces separated by a thin insulating film. Journal of Applied Physics, 95(2), 576–585.

Authors 2
  1. L. Kogut (first)
  2. K. Komvopoulos (additional)
References 36 Referenced 117
  1. 10.1109/33.76523 / IEEE Trans. Compon., Hybrids, Manuf. Technol. (1991)
  2. {'key': '2024020717443463400_r2', 'first-page': '3', 'volume': 'E82-C', 'year': '1999', 'journal-title': 'IEICE Trans. Electron.'} / IEICE Trans. Electron. (1999)
  3. {'key': '2024020717443463400_r3', 'first-page': '1363', 'volume': 'E83-C', 'year': '2000', 'journal-title': 'IEICE Trans. Electron.'} / IEICE Trans. Electron. (2000)
  4. 10.1109/84.788630 / J. Microelectromech. Syst. (1999)
  5. 10.1016/S0924-4247(01)00627-6 / Sens. Actuators A (2001)
  6. {'key': '2024020717443463400_r6', 'first-page': '33', 'volume': '80', 'year': '1997', 'journal-title': 'Electron. Commun. Jpn., Part 2: Electron.'} / Electron. Commun. Jpn., Part 2: Electron. (1997)
  7. 10.1109/6144.846759 / IEEE Trans. Compon., Packag. Technol. (2000)
  8. 10.1016/S1369-8001(99)00035-9 / Mater. Sci. Semicond. Process. (1999)
  9. 10.1109/95.558537 / IEEE Trans. Compon., Packag. Manuf. Technol., Part A (1997)
  10. 10.1016/S0026-2692(00)00153-1 / Microelectron. J. (2001)
  11. 10.1016/S0921-5093(97)00508-X / Mater. Sci. Eng. A (1998)
  12. 10.1109/33.83948 / IEEE Trans. Compon., Hybrids, Manuf. Technol. (1991)
  13. 10.1023/A:1021879800937 / J. Mater. Sci. (2003)
  14. 10.1115/1.1467638 / J. Tribol. (2002)
  15. 10.1149/1.1393206 / J. Electrochem. Soc. (2000)
  16. {'key': '2024020717443463400_r16', 'first-page': '485', 'volume': '233', 'year': '1965', 'journal-title': 'Trans. Metall. Soc. AIME'} / Trans. Metall. Soc. AIME (1965)
  17. 10.1080/10402000208982589 / Tribol. Trans. (2002)
  18. {'key': '2024020717443463400_r18'}
  19. 10.1063/1.1592628 / J. Appl. Phys. (2003)
  20. 10.1063/1.368536 / J. Appl. Phys. (1998)
  21. 10.1115/1.1327583 / J. Tribol. (2001)
  22. 10.1016/S1369-8001(99)00036-0 / Mater. Sci. Semicond. Process. (1999)
  23. 10.1088/0508-3443/13/2/303 / Br. J. Appl. Phys. (1962)
  24. 10.1109/33.76514 / IEEE Trans. Compon., Hybrids, Manuf. Technol. (1991)
  25. 10.1063/1.1735973 / J. Appl. Phys. (1961)
  26. 10.1088/0965-0393/9/3/305 / Modell. Simul. Mater. Sci. Eng. (2001)
  27. 10.1063/1.1702682 / J. Appl. Phys. (1963)
  28. 10.1098/rspa.1966.0242 / Proc. R. Soc. London, Ser. A (1966)
  29. 10.1016/0043-1648(90)90154-3 / Wear (1990)
  30. {'key': '2024020717443463400_r30'}
  31. 10.1115/1.2910594 / J. Heat Transfer (1991)
  32. 10.1098/rspa.1984.0050 / Proc. R. Soc. London, Ser. A (1984)
  33. {'key': '2024020717443463400_r33'}
  34. 10.1063/1.1618925 / J. Appl. Phys. (2003)
  35. {'key': '2024020717443463400_r35', 'first-page': '655', 'volume': '21', 'year': '1965', 'journal-title': 'Sov. Phys. JETP'} / Sov. Phys. JETP (1965)
  36. 10.1016/S0020-7683(99)00075-X / Int. J. Solids Struct. (2000)
Dates
Type When
Created 21 years, 8 months ago (Dec. 19, 2003, 6:12 p.m.)
Deposited 1 year, 6 months ago (Feb. 7, 2024, 6:34 p.m.)
Indexed 2 days, 23 hours ago (Aug. 23, 2025, 9:47 p.m.)
Issued 21 years, 7 months ago (Jan. 15, 2004)
Published 21 years, 7 months ago (Jan. 15, 2004)
Published Print 21 years, 7 months ago (Jan. 15, 2004)
Funders 0

None

@article{Kogut_2004, title={Electrical contact resistance theory for conductive rough surfaces separated by a thin insulating film}, volume={95}, ISSN={1089-7550}, url={http://dx.doi.org/10.1063/1.1629392}, DOI={10.1063/1.1629392}, number={2}, journal={Journal of Applied Physics}, publisher={AIP Publishing}, author={Kogut, L. and Komvopoulos, K.}, year={2004}, month=jan, pages={576–585} }