Crossref journal-article
AIP Publishing
Journal of Applied Physics (317)
Abstract

We report on an extensive study of the two-dimensional electron gas (2DEG) structures containing AlN layers. It is shown that the presence of large polarization fields in the AlN barrier layer in AlN/GaN heterostructures results in high values of the 2DEG sheet density of up to 3.6×1013 cm−2. Room-temperature sheet resistance of 180 Ω/□ is demonstrated in the AlN/GaN structure with a 35 Å AlN barrier. As a result of reduced alloy disorder scattering, low-temperature electron mobility is significantly enhanced in AlN/GaN heterostructures in comparison to AlGaN/GaN structures with similar values of the 2DEG sheet density. The growth of GaN cap layers on top of AlN/GaN structures with relatively thick (∼35 Å) AlN barriers is found to lead to a significant decrease in the 2DEG sheet density. However, inserting a thin (∼10 Å) AlN layer between AlxGa1−xN and GaN in the AlxGa1−xN/GaN (x∼0.2–0.45) 2DEG structures does not affect the 2DEG sheet density and results in an increase of the low-temperature electron mobility in comparison to standard AlGaN/GaN structures. At room temperature, a combination of the high 2DEG sheet density of 2.15×1013 cm−2 and high electron mobility of 1500 cm2/V s in Al0.37Ga0.63N/AlN/GaN yielded a low sheet resistance value of 194 Ω/□.

Bibliography

Smorchkova, I. P., Chen, L., Mates, T., Shen, L., Heikman, S., Moran, B., Keller, S., DenBaars, S. P., Speck, J. S., & Mishra, U. K. (2001). AlN/GaN and (Al,Ga)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy. Journal of Applied Physics, 90(10), 5196–5201.

Authors 10
  1. I. P. Smorchkova (first)
  2. L. Chen (additional)
  3. T. Mates (additional)
  4. L. Shen (additional)
  5. S. Heikman (additional)
  6. B. Moran (additional)
  7. S. Keller (additional)
  8. S. P. DenBaars (additional)
  9. J. S. Speck (additional)
  10. U. K. Mishra (additional)
References 16 Referenced 274
  1. 10.1063/1.354787 / J. Appl. Phys. (1993)
  2. 10.1063/1.120852 / Appl. Phys. Lett. (1998)
  3. 10.1109/16.906456 / IEEE Trans. Electron Devices (2001)
  4. 10.1109/16.906455 / IEEE Trans. Electron Devices (2001)
  5. 10.1109/55.658600 / IEEE Electron Device Lett. (1998)
  6. 10.1016/S0038-1101(96)00161-X / Solid-State Electron. (1997)
  7. 10.1016/S0022-0248(98)00276-0 / J. Cryst. Growth (1998)
  8. 10.1016/S0022-0248(98)00668-X / J. Cryst. Growth (1998)
  9. 10.1049/el:19991407 / Electron. Lett. (1999)
  10. 10.1063/1.1332408 / Appl. Phys. Lett. (2000)
  11. 10.1063/1.1305830 / J. Appl. Phys. (2000)
  12. 10.1063/1.361236 / J. Appl. Phys. (1996)
  13. 10.1063/1.336035 / J. Appl. Phys. (1985)
  14. 10.1063/1.371396 / J. Appl. Phys. (1999)
  15. 10.1063/1.373483 / J. Appl. Phys. (2000)
  16. 10.1063/1.1339858 / J. Appl. Phys. (2001)
Dates
Type When
Created 23 years ago (July 26, 2002, 9:27 a.m.)
Deposited 1 year, 6 months ago (Feb. 10, 2024, 12:04 p.m.)
Indexed 3 months, 1 week ago (May 16, 2025, 8:06 a.m.)
Issued 23 years, 9 months ago (Nov. 15, 2001)
Published 23 years, 9 months ago (Nov. 15, 2001)
Published Print 23 years, 9 months ago (Nov. 15, 2001)
Funders 0

None

@article{Smorchkova_2001, title={AlN/GaN and (Al,Ga)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy}, volume={90}, ISSN={1089-7550}, url={http://dx.doi.org/10.1063/1.1412273}, DOI={10.1063/1.1412273}, number={10}, journal={Journal of Applied Physics}, publisher={AIP Publishing}, author={Smorchkova, I. P. and Chen, L. and Mates, T. and Shen, L. and Heikman, S. and Moran, B. and Keller, S. and DenBaars, S. P. and Speck, J. S. and Mishra, U. K.}, year={2001}, month=nov, pages={5196–5201} }