Crossref journal-article
AIP Publishing
The Journal of Chemical Physics (317)
Abstract

The recently proposed renormalized (R) and completely renormalized (CR) CCSD(T) and CCSD(TQ) methods, which remove the failing of the standard CCSD(T) and CCSD(TQf) approaches at large internuclear separations, have been used to obtain the potential energy function and the vibrational spectrum of the HF molecule. The vibrational term values obtained in the renormalized and completely renormalized CCSD(T) and CCSD(TQ) calculations have been found to be in a better agreement with the experimental [Rydberg–Klein–Rees (RKR)] data than than the results of the expensive full CCSDT calculations. The simple R-CCSD(T) method gives <10 cm−1 errors for the vibrational energies up to ∼41 000 cm−1. The CR-CCSD(T) and CR-CCSD(TQ) methods reduce the ∼300 cm−1 errors in the full CCSDT results for the high-lying states near dissociation to 100–200 cm−1.

Bibliography

Piecuch, P., Kucharski, S. A., Špirko, V., & Kowalski, K. (2001). Can ordinary single-reference coupled-cluster methods describe potential energy surfaces with nearly spectroscopic accuracy? The renormalized coupled-cluster study of the vibrational spectrum of HF. The Journal of Chemical Physics, 115(13), 5796–5804.

Authors 4
  1. Piotr Piecuch (first)
  2. Stanisław A. Kucharski (additional)
  3. Vladimir Špirko (additional)
  4. Karol Kowalski (additional)
References 73 Referenced 53
  1. 10.1063/1.1727484 / J. Chem. Phys. (1966)
  2. {'key': '2024020622415625800_r2', 'first-page': '35', 'volume': '14', 'year': '1969', 'journal-title': 'Adv. Chem. Phys.'} / Adv. Chem. Phys. (1969)
  3. 10.1002/qua.560050402 / Int. J. Quantum Chem. (1971)
  4. 10.1021/j100342a008 / J. Phys. Chem. (1989)
  5. {'key': '2024020622415625800_r5'}
  6. {'key': '2024020622415625800_r6'}
  7. {'key': '2024020622415625800_r7', 'first-page': '1', 'volume': '110', 'year': '1999', 'journal-title': 'Adv. Chem. Phys.'} / Adv. Chem. Phys. (1999)
  8. {'key': '2024020622415625800_r8'}
  9. 10.1063/1.443164 / J. Chem. Phys. (1982)
  10. 10.1002/qua.560360402 / Int. J. Quantum Chem. (1989)
  11. 10.1063/1.449067 / J. Chem. Phys. (1985)
  12. 10.1007/BF01119191 / Theor. Chim. Acta (1990)
  13. 10.1016/S0009-2614(89)87395-6 / Chem. Phys. Lett. (1989)
  14. 10.1063/1.476376 / J. Chem. Phys. (1998)
  15. 10.1063/1.452291 / J. Chem. Phys. (1987)
  16. 10.1063/1.469993 / J. Chem. Phys. (1995)
  17. 10.1063/1.471164 / J. Chem. Phys. (1996)
  18. 10.1063/1.481769 / J. Chem. Phys. (2000)
  19. 10.1063/1.1290609 / J. Chem. Phys. (2000)
  20. 10.1016/S0166-1280(01)00470-5 / J. Mol. Struct.: THEOCHEM (2001)
  21. 10.1016/S0009-2614(01)00730-8 / Chem. Phys. Lett. (2001)
  22. 10.1016/S0009-2614(01)00759-X / Chem. Phys. Lett. (2001)
  23. 10.1103/PhysRevA.30.2193 / Phys. Rev. A (1984)
  24. 10.1103/PhysRevA.54.1210 / Phys. Rev. A (1996)
  25. 10.1007/BF01167279 / Theor. Chim. Acta (1994)
  26. 10.1016/0009-2614(93)E1333-C / Chem. Phys. Lett. (1994)
  27. 10.1002/(SICI)1097-461X(1997)62:2<137::AID-QUA2>3.0.CO;2-X / Int. J. Quantum Chem. (1997)
  28. 10.1063/1.474289 / J. Chem. Phys. (1997)
  29. 10.1063/1.475425 / J. Chem. Phys. (1998)
  30. 10.1016/S0009-2614(97)01132-9 / Chem. Phys. Lett. (1998)
  31. 10.1135/cccc19981381 / Collect. Czech. Chem. Commun. (1998)
  32. 10.1063/1.477926 / J. Chem. Phys. (1999)
  33. 10.1080/00268970050080546 / Mol. Phys. (2000)
  34. 10.1063/1.1323260 / J. Chem. Phys. (2000)
  35. 10.1063/1.460031 / J. Chem. Phys. (1991)
  36. 10.1063/1.461878 / J. Chem. Phys. (1992)
  37. 10.1080/01442359309353285 / Int. Rev. Phys. Chem. (1993)
  38. 10.1063/1.466179 / J. Chem. Phys. (1993)
  39. 10.1063/1.467143 / J. Chem. Phys. (1994)
  40. 10.1016/0009-2614(94)87027-6 / Chem. Phys. Lett. (1994)
  41. 10.1063/1.469156 / J. Chem. Phys. (1995)
  42. 10.1063/1.469992 / J. Chem. Phys. (1995)
  43. 10.1063/1.471378 / J. Chem. Phys. (1996)
  44. 10.1080/002689798168510 / Mol. Phys. (1998)
  45. 10.1063/1.478517 / J. Chem. Phys. (1999)
  46. 10.1063/1.479968 / J. Chem. Phys. (1999)
  47. 10.1063/1.477023 / J. Chem. Phys. (1998)
  48. 10.1063/1.477764 / J. Chem. Phys. (1998)
  49. 10.1016/S0009-2614(00)00423-1 / Chem. Phys. Lett. (2000)
  50. 10.1063/1.1286597 / J. Chem. Phys. (2000)
  51. 10.1016/S0009-2614(97)01144-5 / Chem. Phys. Lett. (1997)
  52. 10.1063/1.452353 / J. Chem. Phys. (1987)
  53. 10.1063/1.455742 / J. Chem. Phys. (1988)
  54. 10.1016/0009-2614(88)80110-6 / Chem. Phys. Lett. (1988)
  55. 10.1007/BF01117419 / Theor. Chim. Acta (1991)
  56. 10.1063/1.463930 / J. Chem. Phys. (1992)
  57. 10.1063/1.461534 / J. Chem. Phys. (1991)
  58. 10.1063/1.1386794 / J. Chem. Phys. (2001)
  59. {'key': '2024020622415625800_r58'}
  60. 10.1016/0022-2852(90)90182-P / J. Mol. Spectrosc. (1990)
  61. {'key': '2024020622415625800_r60', 'first-page': '376', 'volume': '73', 'year': '1931', 'journal-title': 'Z. Phys.'} / Z. Phys. (1931)
  62. 10.1007/BF02057312 / Z. Phys. (1933)
  63. 10.1007/BF01341814 / Z. Phys. (1932)
  64. 10.1088/0959-5309/59/6/310 / Proc. Phys. Soc. (1947)
  65. 10.1016/0009-2614(91)85076-9 / Chem. Phys. Lett. (1991)
  66. 10.1063/1.461313 / J. Chem. Phys. (1991)
  67. {'key': '2024020622415625800_r63', 'first-page': '363', 'volume': '15', 'year': '1961', 'journal-title': 'Math. Comput.'} / Math. Comput. (1961)
  68. 10.1103/PhysRev.54.726 / Phys. Rev. (1938)
  69. {'key': '2024020622415625800_r65', 'first-page': '879', 'volume': '26', 'year': '1992', 'journal-title': 'Int. J. Quantum Chem., Symp.'} / Int. J. Quantum Chem., Symp. (1992)
  70. 10.1063/1.456153 / J. Chem. Phys. (1989)
  71. 10.1063/1.462569 / J. Chem. Phys. (1992)
  72. {'key': '2024020622415625800_r67'}
  73. 10.1063/1.1674408 / J. Chem. Phys. (1970)
Dates
Type When
Created 23 years, 1 month ago (July 26, 2002, 8:44 a.m.)
Deposited 1 year, 7 months ago (Feb. 6, 2024, 8:26 p.m.)
Indexed 1 year, 3 months ago (May 28, 2024, 4:50 p.m.)
Issued 23 years, 11 months ago (Oct. 1, 2001)
Published 23 years, 11 months ago (Oct. 1, 2001)
Published Print 23 years, 11 months ago (Oct. 1, 2001)
Funders 0

None

@article{Piecuch_2001, title={Can ordinary single-reference coupled-cluster methods describe potential energy surfaces with nearly spectroscopic accuracy? The renormalized coupled-cluster study of the vibrational spectrum of HF}, volume={115}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.1400140}, DOI={10.1063/1.1400140}, number={13}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Piecuch, Piotr and Kucharski, Stanisław A. and Špirko, Vladimir and Kowalski, Karol}, year={2001}, month=oct, pages={5796–5804} }