Crossref journal-article
AIP Publishing
Applied Physics Letters (317)
Abstract

The concept of carrier pocket engineering is applied to strained Si/Ge superlattices to obtain a large thermoelectric figure of merit ZT. In this system, the effect of the lattice strain at the Si/Ge interfaces provides another degree of freedom to control the conduction band structure of the superlattice. We explore various geometries and structures to optimize ZT for the whole three-dimensional superlattice. The resultant ZT, calculated for a symmetrized Si(20 Å)/Ge(20 Å) superlattice grown on a (111) oriented Si0.5Ge0.5 substrate, is 0.96 at 300 K and is shown to increase significantly at elevated temperatures. Such a superlattice can be grown using molecular beam epitaxy.

Bibliography

Koga, T., Sun, X., Cronin, S. B., & Dresselhaus, M. S. (1999). Carrier pocket engineering applied to “strained” Si/Ge superlattices to design useful thermoelectric materials. Applied Physics Letters, 75(16), 2438–2440.

Authors 4
  1. T. Koga (first)
  2. X. Sun (additional)
  3. S. B. Cronin (additional)
  4. M. S. Dresselhaus (additional)
References 23 Referenced 89
  1. 10.1103/PhysRevB.47.12727 / Phys. Rev. B (1993)
  2. 10.1063/1.110207 / Appl. Phys. Lett. (1993)
  3. 10.1007/BF02659913 / J. Electron. Mater. (1996)
  4. 10.1103/PhysRevB.53.R10493 / Phys. Rev. B (1996)
  5. {'key': '2024020317034933500_r5', 'first-page': '263', 'volume': '490', 'year': '1998', 'journal-title': 'Mater. Res. Soc. Symp. Proc.'} / Mater. Res. Soc. Symp. Proc. (1998)
  6. {'key': '2024020317034933500_r6'}
  7. 10.1063/1.112607 / Appl. Phys. Lett. (1994)
  8. 10.1103/PhysRevB.51.13244 / Phys. Rev. B (1995)
  9. 10.1103/PhysRevB.51.13797 / Phys. Rev. B (1995)
  10. 10.1063/1.114998 / Appl. Phys. Lett. (1995)
  11. 10.1063/1.119018 / Appl. Phys. Lett. (1997)
  12. 10.1063/1.122640 / Appl. Phys. Lett. (1998)
  13. {'key': '2024020317034933500_r13', 'first-page': '175', 'volume': '4', 'year': '1997', 'journal-title': 'J. Comput.-Aided Mater. Des.'} / J. Comput.-Aided Mater. Des. (1997)
  14. 10.1103/PhysRevB.47.16631 / Phys. Rev. B (1993)
  15. 10.1063/1.115495 / Appl. Phys. Lett. (1995)
  16. 10.1557/JMR.1998.0243 / J. Mater. Res. (1998)
  17. 10.1063/1.122213 / Appl. Phys. Lett. (1998)
  18. 10.1063/1.123242 / Appl. Phys. Lett. (1999)
  19. 10.1063/1.118755 / Appl. Phys. Lett. (1997)
  20. 10.1103/PhysRevB.48.14276 / Phys. Rev. B (1993)
  21. 10.1103/PhysRevB.39.1871 / Phys. Rev. B (1989)
  22. {'key': '2024020317034933500_r22'}
  23. {'key': '2024020317034933500_r23'}
Dates
Type When
Created 23 years ago (July 26, 2002, 9:29 a.m.)
Deposited 1 year, 6 months ago (Feb. 3, 2024, 12:04 p.m.)
Indexed 3 months, 1 week ago (May 13, 2025, 8:08 p.m.)
Issued 25 years, 10 months ago (Oct. 18, 1999)
Published 25 years, 10 months ago (Oct. 18, 1999)
Published Print 25 years, 10 months ago (Oct. 18, 1999)
Funders 0

None

@article{Koga_1999, title={Carrier pocket engineering applied to “strained” Si/Ge superlattices to design useful thermoelectric materials}, volume={75}, ISSN={1077-3118}, url={http://dx.doi.org/10.1063/1.125040}, DOI={10.1063/1.125040}, number={16}, journal={Applied Physics Letters}, publisher={AIP Publishing}, author={Koga, T. and Sun, X. and Cronin, S. B. and Dresselhaus, M. S.}, year={1999}, month=oct, pages={2438–2440} }