Crossref
journal-article
American Society of Civil Engineers (ASCE)
Journal of Engineering Mechanics (30)
References
46
Referenced
212
- Batdorf S. B. and Budianski B. (1949). “A mathematical theory of plasticity based on the concept of slip.” Tech. Note No. 1871 National Advisory Committee for Aeronautics Washington D.C.
-
Bažant Z. P. (1978). “Endochronic inelasticity and incremental plasticity.” Int. J. Solids and Struct. 14 691–714.
(
10.1016/0020-7683(78)90029-X
) -
Bažant Z. P. (1980). “Work inequalities for plastic-fracturing materials.” Int. J. Solids and Struct. 16 870–901.
(
10.1016/0020-7683(80)90055-4
) - Bažant Z. P. (1984). “Chapter 3: Microplane model for strain controlled inelastic behavior.” Proc. Mech. of Engrg. Mat. C. S. Desai and R. H. Gallagher eds. Wiley London 45–59.
{'key': 'e_1_2_1_5_2', 'volume-title': 'Stability of structures: Elastic, inelastic, fracture and damage theories', 'author': 'Bažant Z. P.', 'year': '1991'}
/ Stability of structures: Elastic, inelastic, fracture and damage theories by Bažant Z. P. (1991)10.1061/(ASCE)0733-9445(1984)110:9(2015)
10.1061/(ASCE)0733-9410(1986)112:4(458)
-
Bažant Z. P. Kim J.-H. and Brocca M. (1999). “Finite strain tube-squash test for concrete at high pressure and shear angles up to 70°.” ACI Mat. J. 96(5) 580–592.
(
10.14359/661
) - Bažant Z. P. and Oh B.-H. (1983). “Microplane model for fracture analysis of concrete structures.” Proc. Symp. on Interaction of Non-Nuclear Munitions with Struct. U.S. Air Force Academy Colorado Springs Colo. 49–53.
10.1061/(ASCE)0733-9399(1985)111:4(559)
-
Bažant Z. P. and Oh B.-H. (1986). “Efficient numerical integration on the surface of a sphere.” Zeitschrift für angewandte Mathematik und Mechanik ( ZAMM ) Berlin 66(1) 37–49.
(
10.1002/zamm.19860660108
) 10.1061/(ASCE)0733-9399(1990)116:11(2485)
10.1061/(ASCE)0733-9399(1992)118:3(540)
{'key': 'e_1_2_1_14_2', 'volume-title': 'Fracture and size effect in concrete and other quasibrittle materials', 'author': 'Bažant Z. P.', 'year': '1998'}
/ Fracture and size effect in concrete and other quasibrittle materials by Bažant Z. P. (1998)10.1061/(ASCE)0733-9399(1987)113:7(1050)
10.1061/(ASCE)0733-9399(1988)114:10(1672)
10.1061/(ASCE)0733-9399(1988)114:10(1689)
10.1061/(ASCE)0733-9399(1996)122:3(255)
10.1061/(ASCE)0733-9399(1996)122:3(245)
- Budianski B. and Wu T. T. (1962). “Theoretical prediction of plastic strains of polycrystals.” Proc. 4th U.S. Nat. Congr. of Appl. Mech. ASME New York 1175–1185.
10.1061/(ASCE)0733-9399(2000)126:9(954)
-
Carol I. and Bažant Z. P. (1997). “Damage and plasticity in microplane theory.” Int. J. Solids and Struct. 34(29) 3807–3835.
(
10.1016/S0020-7683(96)00238-7
) 10.1061/(ASCE)0733-9399(1991)117:10(2429)
- Carol I. Jirásek M. Bažant Z. P. and Steinmann P. (1998). “New thermodynamic approach to microplane model with application to finite deformations.” Tech. Rep. PI-145 International Center for Numerical Methods in Engineering (CIMNE) Barcelona Spain.
-
Carol I. Jirásek M. and Bažant Z. P. (2000). “New thermodynamic approach to microplane model. Part I: Free energy and consistent microplane stresses.” Rep. Northwestern University Evanston Ill.
(
10.1016/S0020-7683(00)00212-2
) -
Carol I. Prat P. C. and Bažant Z. P. (1992). “New explicit microplane model for concrete: Theoretical aspects and numerical implementation.” Int. J. Solids and Struct. 29(9) 1173–1191.
(
10.1016/0020-7683(92)90141-F
) -
Cofer W. F. and Kohut S. W. (1994). “A general nonlocal microplane concrete material model for dynamic finite element analysis.” Comp. and Struct. 53(1) 189–199.
(
10.1016/0045-7949(94)90141-4
) 10.1061/(ASCE)0899-1561(1993)5:3(372)
-
Hill R. (1965). “Continuum micromechanics of elastoplastic polycrystals.” J. Mech. Phys. Solids 13 89–101.
(
10.1016/0022-5096(65)90023-2
) -
Hill R. (1966). “Generalized constitutive relations for incremental deformations of metal crystals by multi-slip.” J. Mech. Phys. Solids 14 95–102.
(
10.1016/0022-5096(66)90040-8
) - Jirásek M. ( 1993). “Modeling of fracture and damage in quasibrittle materials.” PhD dissertation Northwestern University Evanston Ill.
-
Kröner E. (1961). “Zur plastischen Verformung des Vielkristalls.” Acta Metallurgica 9(Feb.) 155–161.
(
10.1016/0001-6160(61)90060-8
) - Kuhl E. and Carol I. (2000). “New thermodynamic approach to microplane model. I: Dissipation and inelastic constitutive modeling.” Int. J. Solids and Struct. in press.
-
Lin T. H. and Ito M. (1965). “Theoretical plastic distortion of a polycrystalline aggregate under combined and reversed stresses.” J. Mech. Phys. Solids 13 103–115.
(
10.1016/0022-5096(65)90024-4
) -
Lin T. H. and Ito M. (1966). “Theoretical plastic stress-strain relationship of a polycrystal.” Int. J. Engrg. Sci. 4 543–561.
(
10.1016/0020-7225(66)90015-2
) 10.1061/(ASCE)0733-9399(1992)118:7(1365)
-
Ožbolt J. and Bažant Z. P. (1996). “Numerical smeared fracture analysis: Nonlocal microcrack interaction approach.” Int. J. Numer. Methods in Engrg. Chichester U.K. 39 635–661.
(
10.1002/(SICI)1097-0207(19960229)39:4<635::AID-NME874>3.0.CO;2-8
) - Pande G. N. and Sharma K. G. (1981). “Time-dependent multi-laminate model for clay—a numerical study of the influence of rotation of principal stress axes.” Proc. Implementation of Comp. Procedures and Strain-Stress Laws in Geotech. Engrg. Vol. II Acorn Press Durham N.C. 575–590.
- Pande G. N. and Sharma K. G. (1982). “Multi-laminate model of clays—A numerical evaluation of the influence of rotation of the principal stress axis.” Rep. Dept. of Civ. Engrg. University College of Swansea U.K.
- Pande G. N. and Xiong W. (1982). “An improved multi-laminate model of jointed rock masses.” Proc. Int. Symp. on Numer. Models in Geomech. R. Dungar G. N. Pande and G. A. Studder eds. Balkema Rotterdam The Netherlands 218–226.
10.1061/(ASCE)0733-9410(1991)117:6(891)
- Prat P. C. Sánchez F. and Gens A. (1997). “Equivalent continuum anisotropic model for rocks: Theory and application to finite-element analysis.” Proc. 6th Int. Symp. on Numer. Methods in Geomech. Balkema Rotterdam The Netherlands 159–166.
-
Rice J. R. (1970). “On the structure of stress-strain relations for time-dependent plastic deformation of metals.” J. Appl. Mech. 37(Sept.) 728–737.
(
10.1115/1.3408603
) {'key': 'e_1_2_1_44_2', 'volume-title': 'Approximate calculation of multiple integrals', 'author': 'Stroud A. H.', 'year': '1971'}
/ Approximate calculation of multiple integrals by Stroud A. H. (1971)- Taylor G. I. (1938). “Plastic strain in metals.” J. Inst. of Metals London 62 307–324.
-
Zienkiewicz O. C. and Pande G. N. (1977). “Time-dependent multi-laminate model of rocks—A numerical study of deformation and failure of rock masses.” Int. J. Numer. and Analytical Methods in Geomech. 1 219–247.
(
10.1002/nag.1610010302
)
Dates
Type | When |
---|---|
Created | 23 years ago (July 26, 2002, 7:56 a.m.) |
Deposited | 3 years, 2 months ago (June 8, 2022, 8:08 p.m.) |
Indexed | 1 day, 1 hour ago (Aug. 23, 2025, 9:18 p.m.) |
Issued | 24 years, 11 months ago (Sept. 1, 2000) |
Published | 24 years, 11 months ago (Sept. 1, 2000) |
Published Print | 24 years, 11 months ago (Sept. 1, 2000) |
@article{Ba_ant_2000, title={Microplane Model M4 for Concrete. I: Formulation with Work-Conjugate Deviatoric Stress}, volume={126}, ISSN={1943-7889}, url={http://dx.doi.org/10.1061/(asce)0733-9399(2000)126:9(944)}, DOI={10.1061/(asce)0733-9399(2000)126:9(944)}, number={9}, journal={Journal of Engineering Mechanics}, publisher={American Society of Civil Engineers (ASCE)}, author={Bažant, Zdeněk P. and Caner, Ferhun C. and Carol, Ignacio and Adley, Mark D. and Akers, Stephen A.}, year={2000}, month=sep, pages={944–953} }