Abstract
An important issue for the growth and management of grid‐connected photovoltaic (PV) systems is the possibility to forecast the power output over different horizons. In this work, statistical methods based on multiregression analysis and the Elmann artificial neural network (ANN) have been developed in order to predict power production of a 960 kWP grid‐connected PV plant installed in Italy. Different combinations of the time series of produced PV power and measured meteorological variables were used as inputs of the ANN. Several statistical error measures are evaluated to estimate the accuracy of the forecasting methods. A decomposition of the standard deviation error has been carried out to identify the amplitude and phase error. The skewness and kurtosis parameters allow a detailed analysis of the distribution error.
References
29
Referenced
220
- GSE (Italian manager of energy services). Rapporto statistico; 2011. 〈http://www.gse.it〉
10.1016/j.renene.2006.06.014
10.1016/j.solener.2008.02.003
10.1016/j.renene.2007.09.020
10.1016/j.solener.2010.02.006
10.1016/j.solener.2010.07.002
10.1016/j.energy.2010.10.032
{'key': 'e_1_2_8_9_1', 'first-page': '773', 'volume-title': 'Forecasting power output for grid‐connected photovoltaic power system without using solar radiation measurement', 'author': 'Cai T.', 'year': '2010'}
/ Forecasting power output for grid‐connected photovoltaic power system without using solar radiation measurement by Cai T. (2010)10.1016/j.solener.2010.08.011
10.1109/JSTARS.2009.2020300
10.1016/j.renene.2012.01.108
{'key': 'e_1_2_8_13_1', 'first-page': '3659', 'article-title': 'Application of recurrent neural network to short‐term‐ahead generating power forecasting for photovoltaic system', 'volume': '1', 'author': 'Yona A.', 'year': '2007', 'journal-title': 'IEEE Power Eng. Soc. Gen. Meet.'}
/ IEEE Power Eng. Soc. Gen. Meet. / Application of recurrent neural network to short‐term‐ahead generating power forecasting for photovoltaic system by Yona A. (2007)10.1016/j.enconman.2009.11.024
10.1016/j.renene.2006.12.017
10.1016/j.solener.2009.05.016
10.1016/j.enconman.2007.12.030
{'volume-title': 'Application of neural network to 24‐hour‐ahead generating power forecasting for PV system', 'year': '2008', 'author': 'Yona A.', 'key': 'e_1_2_8_18_1'}
/ Application of neural network to 24‐hour‐ahead generating power forecasting for PV system by Yona A. (2008){'key': 'e_1_2_8_19_1', 'first-page': '4623', 'volume-title': 'Photovoltaic system power forecasting based on combined grey model and BP neural network', 'author': 'Wang S.', 'year': '2011'}
/ Photovoltaic system power forecasting based on combined grey model and BP neural network by Wang S. (2011)10.1504/IJAISC.2008.021264
10.1016/S0196-8904(03)00009-8
10.1016/j.energy.2011.05.006
10.1016/j.apenergy.2010.10.035
10.1016/j.egypro.2011.09.024
10.1016/j.enconman.2012.12.017
10.1260/030952405776234599
{'volume-title': '‘Solar energy forecasting and resource assessment’', 'year': '2013', 'author': 'Kleissl J.', 'key': 'e_1_2_8_27_1'}
/ ‘Solar energy forecasting and resource assessment’ by Kleissl J. (2013)10.1115/1.1862266
{'volume-title': 'Short‐term power forecasting by statistical methods for photovoltaic plants in south Italy', 'year': '2013', 'author': 'De Giorgi M.G.', 'key': 'e_1_2_8_29_1'}
/ Short‐term power forecasting by statistical methods for photovoltaic plants in south Italy by De Giorgi M.G. (2013)10.1016/j.jhydrol.2003.12.033
Dates
Type | When |
---|---|
Created | 11 years, 6 months ago (March 1, 2014, 1:08 a.m.) |
Deposited | 5 months, 1 week ago (March 21, 2025, 10:42 p.m.) |
Indexed | 1 week, 6 days ago (Aug. 21, 2025, 2:10 p.m.) |
Issued | 11 years, 4 months ago (May 1, 2014) |
Published | 11 years, 4 months ago (May 1, 2014) |
Published Online | 11 years, 4 months ago (May 1, 2014) |
Published Print | 11 years, 4 months ago (May 1, 2014) |
Funders
1
European Commission
10.13039/501100000780
Region: Europe
gov (National government)
Labels
26
- European Union
- Comisión Europea
- Europäische Kommission
- EU-Kommissionen
- Euroopa Komisjoni
- Ευρωπαϊκής Επιτροπής
- Европейската комисия
- Evropské komise
- Commission européenne
- Choimisiúin Eorpaigh
- Europskoj komisiji
- Commissione europea
- La Commissione europea
- Eiropas Komisiju
- Europos Komisijos
- Európai Bizottságról
- Europese Commissie
- Komisja Europejska
- Comissão Europeia
- Comisia Europeană
- Európskej komisii
- Evropski komisiji
- Euroopan komission
- Europeiska kommissionen
- EC
- EU
Awards
1
- 285194
@article{De_Giorgi_2014, title={Photovoltaic power forecasting using statistical methods: impact of weather data}, volume={8}, ISSN={1751-8830}, url={http://dx.doi.org/10.1049/iet-smt.2013.0135}, DOI={10.1049/iet-smt.2013.0135}, number={3}, journal={IET Science, Measurement & Technology}, publisher={Institution of Engineering and Technology (IET)}, author={De Giorgi, Maria Grazia and Congedo, Paolo Maria and Malvoni, Maria}, year={2014}, month=may, pages={90–97} }