Crossref journal-article
Institution of Engineering and Technology (IET)
IET Science, Measurement & Technology (265)
Abstract

An important issue for the growth and management of grid‐connected photovoltaic (PV) systems is the possibility to forecast the power output over different horizons. In this work, statistical methods based on multiregression analysis and the Elmann artificial neural network (ANN) have been developed in order to predict power production of a 960 kWP grid‐connected PV plant installed in Italy. Different combinations of the time series of produced PV power and measured meteorological variables were used as inputs of the ANN. Several statistical error measures are evaluated to estimate the accuracy of the forecasting methods. A decomposition of the standard deviation error has been carried out to identify the amplitude and phase error. The skewness and kurtosis parameters allow a detailed analysis of the distribution error.

Bibliography

De Giorgi, M. G., Congedo, P. M., & Malvoni, M. (2014). Photovoltaic power forecasting using statistical methods: impact of weather data. IET Science, Measurement & Technology, 8(3), 90–97. Portico.

Authors 3
  1. Maria Grazia De Giorgi (first)
  2. Paolo Maria Congedo (additional)
  3. Maria Malvoni (additional)
References 29 Referenced 220
  1. GSE (Italian manager of energy services). Rapporto statistico; 2011. 〈http://www.gse.it〉
  2. 10.1016/j.renene.2006.06.014
  3. 10.1016/j.solener.2008.02.003
  4. 10.1016/j.renene.2007.09.020
  5. 10.1016/j.solener.2010.02.006
  6. 10.1016/j.solener.2010.07.002
  7. 10.1016/j.energy.2010.10.032
  8. {'key': 'e_1_2_8_9_1', 'first-page': '773', 'volume-title': 'Forecasting power output for grid‐connected photovoltaic power system without using solar radiation measurement', 'author': 'Cai T.', 'year': '2010'} / Forecasting power output for grid‐connected photovoltaic power system without using solar radiation measurement by Cai T. (2010)
  9. 10.1016/j.solener.2010.08.011
  10. 10.1109/JSTARS.2009.2020300
  11. 10.1016/j.renene.2012.01.108
  12. {'key': 'e_1_2_8_13_1', 'first-page': '3659', 'article-title': 'Application of recurrent neural network to short‐term‐ahead generating power forecasting for photovoltaic system', 'volume': '1', 'author': 'Yona A.', 'year': '2007', 'journal-title': 'IEEE Power Eng. Soc. Gen. Meet.'} / IEEE Power Eng. Soc. Gen. Meet. / Application of recurrent neural network to short‐term‐ahead generating power forecasting for photovoltaic system by Yona A. (2007)
  13. 10.1016/j.enconman.2009.11.024
  14. 10.1016/j.renene.2006.12.017
  15. 10.1016/j.solener.2009.05.016
  16. 10.1016/j.enconman.2007.12.030
  17. {'volume-title': 'Application of neural network to 24‐hour‐ahead generating power forecasting for PV system', 'year': '2008', 'author': 'Yona A.', 'key': 'e_1_2_8_18_1'} / Application of neural network to 24‐hour‐ahead generating power forecasting for PV system by Yona A. (2008)
  18. {'key': 'e_1_2_8_19_1', 'first-page': '4623', 'volume-title': 'Photovoltaic system power forecasting based on combined grey model and BP neural network', 'author': 'Wang S.', 'year': '2011'} / Photovoltaic system power forecasting based on combined grey model and BP neural network by Wang S. (2011)
  19. 10.1504/IJAISC.2008.021264
  20. 10.1016/S0196-8904(03)00009-8
  21. 10.1016/j.energy.2011.05.006
  22. 10.1016/j.apenergy.2010.10.035
  23. 10.1016/j.egypro.2011.09.024
  24. 10.1016/j.enconman.2012.12.017
  25. 10.1260/030952405776234599
  26. {'volume-title': '‘Solar energy forecasting and resource assessment’', 'year': '2013', 'author': 'Kleissl J.', 'key': 'e_1_2_8_27_1'} / ‘Solar energy forecasting and resource assessment’ by Kleissl J. (2013)
  27. 10.1115/1.1862266
  28. {'volume-title': 'Short‐term power forecasting by statistical methods for photovoltaic plants in south Italy', 'year': '2013', 'author': 'De Giorgi M.G.', 'key': 'e_1_2_8_29_1'} / Short‐term power forecasting by statistical methods for photovoltaic plants in south Italy by De Giorgi M.G. (2013)
  29. 10.1016/j.jhydrol.2003.12.033
Dates
Type When
Created 11 years, 6 months ago (March 1, 2014, 1:08 a.m.)
Deposited 5 months, 1 week ago (March 21, 2025, 10:42 p.m.)
Indexed 1 week, 6 days ago (Aug. 21, 2025, 2:10 p.m.)
Issued 11 years, 4 months ago (May 1, 2014)
Published 11 years, 4 months ago (May 1, 2014)
Published Online 11 years, 4 months ago (May 1, 2014)
Published Print 11 years, 4 months ago (May 1, 2014)
Funders 1
  1. European Commission 10.13039/501100000780

    Region: Europe

    gov (National government)

    Labels26
    1. European Union
    2. Comisión Europea
    3. Europäische Kommission
    4. EU-Kommissionen
    5. Euroopa Komisjoni
    6. Ευρωπαϊκής Επιτροπής
    7. Европейската комисия
    8. Evropské komise
    9. Commission européenne
    10. Choimisiúin Eorpaigh
    11. Europskoj komisiji
    12. Commissione europea
    13. La Commissione europea
    14. Eiropas Komisiju
    15. Europos Komisijos
    16. Európai Bizottságról
    17. Europese Commissie
    18. Komisja Europejska
    19. Comissão Europeia
    20. Comisia Europeană
    21. Európskej komisii
    22. Evropski komisiji
    23. Euroopan komission
    24. Europeiska kommissionen
    25. EC
    26. EU
    Awards1
    1. 285194

@article{De_Giorgi_2014, title={Photovoltaic power forecasting using statistical methods: impact of weather data}, volume={8}, ISSN={1751-8830}, url={http://dx.doi.org/10.1049/iet-smt.2013.0135}, DOI={10.1049/iet-smt.2013.0135}, number={3}, journal={IET Science, Measurement & Technology}, publisher={Institution of Engineering and Technology (IET)}, author={De Giorgi, Maria Grazia and Congedo, Paolo Maria and Malvoni, Maria}, year={2014}, month=may, pages={90–97} }