Crossref journal-article
Royal Society of Chemistry (RSC)
Journal of Materials Chemistry A (292)
Abstract

Achieving the 2016 Paris agreement goal of limiting global warming below 2 °C and securing a sustainable energy future require materials innovations in renewable energy technologies. Machine learning has demonstrated many successes to accelerate the discovery renewable energy materials.

Bibliography

Gu, G. H., Noh, J., Kim, I., & Jung, Y. (2019). Machine learning for renewable energy materials. Journal of Materials Chemistry A, 7(29), 17096–17117.

Authors 4
  1. Geun Ho Gu (first)
  2. Juhwan Noh (additional)
  3. Inkyung Kim (additional)
  4. Yousung Jung (additional)
References 174 Referenced 252
  1. Synthesis report on the aggregate effect of INDCs , United Nations Framework Convention on Climate Change, United Nations , 2016 , https://unfccc.int/sites/default/files/resource/docs/2016/cop22/eng/02.pdf / Synthesis report on the aggregate effect of INDCs (2016)
  2. 10.1038/nature18307 / Nature by Rogelj (2016)
  3. Mission Innovation, http://mission-innovation.net/ , accessed January, 2019
  4. A. Aspuru-Guzik , K.Persson , A.Alexander-Katz , C.Amador , D.Solis-Ibarra , M.Antes , A.Mosby , M.Aykol , E.Chan , S.Dwaraknath , J.Montoya , E.Rotenberg , J.Gregoire , A.HattrickSimpers , D. M.Huang , J.Hein , G.Hutchison , O.Isayev , Y.Jung , J.Kiviaho , C.Kreisbeck , L.Roch , S.Saikin , D.Tabor , J.Lambert , S.Odom , J.Pijpers , M.Ross , J.Schrier , R.Segalman , M.Sfeir , H.Tribukait and T.Vegge , Materials Acceleration Platform: Accelerating Advanced Energy Materials Discovery by Integrating High-Throughput Methods with Artificial Intelligence: Report of the Clean Energy Materials Innovation Challenge Expert Workshop , Mission Innovation , 2018 / Materials Acceleration Platform: Accelerating Advanced Energy Materials Discovery by Integrating High-Throughput Methods with Artificial Intelligence: Report of the Clean Energy Materials Innovation Challenge Expert Workshop by Aspuru-Guzik (2018)
  5. 10.1016/j.respol.2005.12.006 / Resour. Policy by Maine (2006)
  6. T. Mueller , A. G.Kusne and R.Ramprasad , in Reviews in Computational Chemistry , ed. A. L. Parrill and K. B. Lipkowitz , John Wiley & Sons, Inc. , Hoboken, New Jersey , 2016 , vol. 29 , ch. 4, pp. 186–273 (10.1002/9781119148739.ch4) / Reviews in Computational Chemistry by Mueller (2016)
  7. X. Su and T. M.Khoshgoftaar , Lect. Notes Artif. Int. , 2009 , vol. 2009 , p. 19 / Lect. Notes Artif. Int. by Su (2009)
  8. 10.1016/S0933-3657(01)00077-X / Artif. Intell. Med. by Kononenko (2001)
  9. 10.1117/1.2819119 / J. Electron. Imaging by Nasrabadi (2007)
  10. A. Graves , A.Mohamed and G.Hinton , Speech recognition with deep recurrent neural networks , 2013 / Speech recognition with deep recurrent neural networks by Graves (2013)
  11. 10.1063/1.4977487 / Appl. Phys. Rev. by Green (2017)
  12. 10.1038/s41578-018-0005-z / Nat. Rev. Mater. by Tabor (2018)
  13. 10.1038/npjcompumats.2016.31 / npj Comput. Mater. by Nikolaev (2016)
  14. 10.1063/1.4966192 / J. Chem. Phys. by Behler (2016)
  15. 10.1021/acscentsci.7b00572 / ACS Cent. Sci. by Gómez-Bombarelli (2018)
  16. J. Hemminger , G.Crabtree , M.Kastner , S.Bare , B.Nora , C.Sylvia , S.Clark , P.Cummings , F.Disalvo , M.El-sayed , G.Flynn , B.Gates , L.Greene , S.Hammes-Schiffer , M.Hochella , B.Kay , K.Kirby , J.McCurdy , W. D.Morse , M.Moskovits , K.Nagy , J.Richards , J.Spence , K.Taylor , D.Tobias and J.Tranquada , New Science for a Secure and Sustainable Energy Future: A report of a subcommittee to the Basic Energy Science Advisory Committee , U.S. Department of Energy , U.S.A , 2008 / New Science for a Secure and Sustainable Energy Future: A report of a subcommittee to the Basic Energy Science Advisory Committee by Hemminger (2008)
  17. J. Stringer , L.Horton , M.Singer , J.Ahearne , G.Crabtree , C.Baker , L.DeJonghe , J.Herbst , M.Dresselhaus , R.Smalley and R.Stoller , Basic Research Needs To Assure A Secure Energy Future: A Report from the Basic Energy Science Advisory Committee , U.S. Department of Energy, Oak Ridge National Laboratory , U.S.A. , 2003 / Basic Research Needs To Assure A Secure Energy Future: A Report from the Basic Energy Science Advisory Committee by Stringer (2003)
  18. SunShot Initiative 2030 Goals , U.S. Department of Energy: Office of Energy Efficiency & Renewable Energy: Solar Energy Technologies Office , U.S.A. , 2017 , https://www.energy.gov/sites/prod/files/2018/05/f51/SunShot%202030%20Fact%20Sheet.pdf / SunShot Initiative 2030 Goals (2017)
  19. Progress in Hydrogen and Fuel Cells , Office of Energy Efficiency & Renewable Energy, U.S. Department of Energy, Fuel Cell Technologies Office , U.S.A. , 2017 , https://www.energy.gov/sites/prod/files/2017/10/f37/fcto-progress-fact-sheet-august-2017.pdf / Progress in Hydrogen and Fuel Cells (2017)
  20. A. Chen , Berkeley Lab Study Estimates $80 Billion Annual Cost of Power Interruptions , https://newscenter.lbl.gov/2005/02/02/berkeley-lab-study-estimates-80-billion-annual-cost-of-power-interruptions/ , accessed January, 2019 / Berkeley Lab Study Estimates $80 Billion Annual Cost of Power Interruptions by Chen (2019)
  21. 10.1038/s41586-018-0337-2 / Nature by Butler (2018)
  22. 10.1038/nmat4395 / Nat. Mater. by Kalinin (2015)
  23. 10.1016/j.cossms.2016.07.002 / Curr. Opin. Solid State Mater. Sci. by Ward (2017)
  24. 10.1038/s41524-017-0056-5 / npj Comput. Mater. by Ramprasad (2017)
  25. 10.1016/j.jmat.2017.08.002 / J. Materiomics by Liu (2017)
  26. 10.1002/aic.16198 / AIChE J. by Goldsmith (2018)
  27. 10.1126/science.aat2663 / Science by Sanchez-Lengeling (2018)
  28. 10.1021/ci049714+ / J. Chem. Inf. Model. by Irwin (2005)
  29. 10.1093/nar/gkw1074 / Nucleic Acids Res. by Gaulton (2016)
  30. 10.1021/ja902302h / J. Am. Chem. Soc. by Blum (2009)
  31. 10.1021/ci300415d / J. Chem. Inf. Model. by Ruddigkeit (2012)
  32. 10.1107/S0108767307038081 / Acta Crystallogr., Sect. A: Found. Crystallogr. by Allmann (2007)
  33. 10.1107/S0108768102006948 / Acta Crystallogr., Sect. B: Struct. Sci. by Belsky (2002)
  34. 10.1063/1.4812323 / APL Mater. by Jain (2013)
  35. 10.1038/npjcompumats.2015.10 / npj Comput. Mater. by Kirklin (2015)
  36. 10.1016/j.commatsci.2012.02.005 / Comput. Mater. Sci. by Curtarolo (2012)
  37. 10.1080/00401706.1970.10488634 / Technometrics by Hoerl (1970)
  38. 10.1111/j.2517-6161.1996.tb02080.x / J. R. Stat. Ser. Soc. B Stat. Methodol. by Tibshirani (1996)
  39. 10.1111/j.1467-9868.2005.00503.x / J. R. Stat. Soc. Ser. B by Zou (2005)
  40. 10.1016/S0169-7439(01)00155-1 / Chemom. Intell. Lab. Syst. by Wold (2001)
  41. 10.1023/A:1018628609742 / Neural Process. Lett. by Suykens (1999)
  42. 10.1109/21.97458 / IEEE Trans. Syst. Man Cybern. by Safavian (1991)
  43. H. Tin Kam , Random decision forests , Proceedings of 3rd International Conference on Document Analysis and Recognition , 1995 , pp. 278–282 , 10.1109/ICDAR.1995.598994 (10.1109/ICDAR.1995.598994) / Proceedings of 3rd International Conference on Document Analysis and Recognition by Tin Kam (1995)
  44. {'key': 'C9TA02356A-(cit44)/*[position()=1]', 'first-page': '613', 'volume': '35', 'author': 'Cramer', 'year': '2004', 'journal-title': 'Stud. Hist. Philos. Sci.'} / Stud. Hist. Philos. Sci. by Cramer (2004)
  45. C. Saunders , A.Gammerman and V.Vovk , Ridge regression learning algorithm in dual variables , International Conference on Machine Learning , 1998 , pp. 515–521 / International Conference on Machine Learning by Saunders (1998)
  46. C. E. Rasmussen , in Advanced Lectures on Machine Learning: ML Summer Schools 2003 , Canberra, Australia, February 2–14, 2003, Tübingen, Germany, August 4–16, 2003, Revised Lectures, ed. O. Bousquet , U. von Luxburg and G. Rätsch , Springer Berlin Heidelberg , Berlin, Heidelberg , 2004 , pp. 63–71 , 10.1007/978-3-540-28650-9_4 (10.1007/978-3-540-28650-9_4) / Advanced Lectures on Machine Learning: ML Summer Schools 2003 by Rasmussen (2004)
  47. 10.1038/nature14539 / Nature by LeCun (2015)
  48. P. Sabatier , La catalyse en chimie organique , Librairie polytechnique , Paris et Liege , 1920 / La catalyse en chimie organique by Sabatier (1920)
  49. 10.1016/j.jcat.2014.12.033 / J. Catal. by Medford (2015)
  50. 10.1002/anie.201412214 / Angew. Chem., Int. Ed. by Roberts (2015)
  51. 10.1038/ncomms15438 / Nat. Commun. by Liu (2017)
  52. 10.1021/acs.jpclett.5b01660 / J. Phys. Chem. Lett. by Ma (2015)
  53. 10.1016/j.cattod.2016.04.013 / Catal. Today by Li (2017)
  54. B. Hammer and J. K.Nørskov , in Advances in Catalysis , Academic Press , 2000 , vol. 45 , pp. 71–129 / Advances in Catalysis by Hammer (2000)
  55. 10.1039/C7SC03422A / Chem. Sci. by Noh (2018)
  56. 10.1038/s41929-018-0142-1 / Nat. Catal. by Tran (2018)
  57. 10.1039/C6RA04345C / RSC Adv. by Takigawa (2016)
  58. 10.1021/acs.jpcc.7b12670 / J. Phys. Chem. C by Toyao (2018)
  59. 10.1063/1.3369007 / J. Chem. Phys. by Davran-Candan (2010)
  60. 10.1021/acs.jpclett.7b02010 / J. Phys. Chem. Lett. by Jinnouchi (2017)
  61. 10.1021/acs.jpcc.7b08686 / J. Phys. Chem. C by Jinnouchi (2017)
  62. 10.1016/j.molliq.2017.11.156 / J. Mol. Liq. by Yarveicy (2018)
  63. 10.1002/ghg.1296 / Greenhouse Gases: Sci. Technol. by Liu (2012)
  64. 10.1021/jp404287t / J. Phys. Chem. C by Fernandez (2013)
  65. 10.1021/jp4006422 / J. Phys. Chem. C by Fernandez (2013)
  66. 10.1038/s41524-017-0045-8 / npj Comput. Mater. by Borboudakis (2017)
  67. 10.1021/acs.chemmater.8b02257 / Chem. Mater. by Anderson (2018)
  68. 10.1039/c1ee01598b / Energy Environ. Sci. by Etacheri (2011)
  69. 10.1039/C7CP08280K / Phys. Chem. Chem. Phys. by Sodeyama (2018)
  70. 10.1149/1.3148721 / J. Electrochem. Soc. by Aurbach (2009)
  71. 10.1002/adfm.201200696 / Adv. Funct. Mater. by Lin (2013)
  72. 10.1021/acsomega.8b00576 / ACS Omega by Okamoto (2018)
  73. 10.1021/cm3000427 / Chem. Mater. by Jalem (2012)
  74. 10.1039/C3TA13235H / J. Mater. Chem. A by Jalem (2014)
  75. 10.1021/ci500752n / J. Chem. Inf. Model. by Jalem (2015)
  76. 10.1038/srep40769 / Sci. Rep. by Chen (2017)
  77. 10.1002/aenm.201300060 / Adv. Energy Mater. by Fujimura (2013)
  78. 10.1039/C7CP00518K / Phys. Chem. Chem. Phys. by Kireeva (2017)
  79. 10.1038/s41598-018-23852-y / Sci. Rep. by Jalem (2018)
  80. 10.1016/j.commatsci.2016.02.021 / Comput. Mater. Sci. by Attarian Shandiz (2016)
  81. 10.1016/j.jmat.2017.02.002 / J. Materiomics by Wang (2017)
  82. 10.1021/acs.jpcc.7b09760 / J. Phys. Chem. C by Eremin (2017)
  83. 10.1021/acs.jpca.7b01629 / J. Phys. Chem. A by Okamoto (2017)
  84. 10.1038/s41524-018-0085-8 / npj Comput. Mater. by Stanev (2018)
  85. 10.1021/acs.jcim.6b00332 / J. Chem. Inf. Model. by Kim (2017)
  86. 10.1063/1.1736034 / J. Appl. Phys. by Shockley (1961)
  87. 10.1038/nphoton.2014.134 / Nat. Photonics by Green (2014)
  88. 10.1002/cphc.201800382 / ChemPhysChem by Allam (2018)
  89. 10.1038/srep19375 / Sci. Rep. by Pilania (2016)
  90. 10.1016/j.commatsci.2016.12.004 / Comput. Mater. Sci. by Pilania (2017)
  91. 10.1021/acsphotonics.7b01479 / ACS Photonics by Takahashi (2018)
  92. 10.1016/j.commatsci.2013.10.016 / Comput. Mater. Sci. by Dey (2014)
  93. 10.1038/npjcompumats.2016.28 / npj Comput. Mater. by Ward (2016)
  94. 10.1016/j.joule.2017.10.006 / Joule by Lopez (2017)
  95. 10.1016/j.commatsci.2018.04.033 / Comput. Mater. Sci. by Li (2018)
  96. 10.1021/acs.chemmater.7b00156 / Chem. Mater. by Schmidt (2017)
  97. 10.1021/acs.jpclett.6b01254 / J. Phys. Chem. Lett. by Ulissi (2016)
  98. 10.1038/ncomms14621 / Nat. Commun. by Ulissi (2017)
  99. 10.1021/acs.jpca.8b02842 / J. Phys. Chem. A by Li (2018)
  100. 10.1016/j.ces.2014.09.011 / Chem. Eng. Sci. by Sutton (2015)
  101. 10.1039/C7RE00210F / React. Chem. Eng. by Gu (2018)
  102. 10.1021/acs.jpcc.6b06430 / J. Phys. Chem. C by Gu (2016)
  103. 10.1021/acs.jpcc.7b07340 / J. Phys. Chem. C by Gu (2017)
  104. 10.1002/kin.21158 / Int. J. Chem. Kinet. by Han (2018)
  105. 10.1063/1.4886337 / J. Chem. Phys. by Vilhelmsen (2014)
  106. 10.1002/adsc.200404170 / Adv. Synth. Catal. by Burello (2004)
  107. 10.1021/acs.iecr.7b00808 / Ind. Eng. Chem. Res. by Janet (2017)
  108. 10.1002/jcc.24437 / J. Comput. Chem. by Ioannidis (2016)
  109. 10.1021/acs.jpca.7b08750 / J. Phys. Chem. A by Janet (2017)
  110. 10.1021/acs.jpclett.8b00170 / J. Phys. Chem. Lett. by Janet (2018)
  111. 10.1103/PhysRevB.95.144110 / Phys. Rev. B by Seko (2017)
  112. 10.1103/PhysRevLett.117.135502 / Phys. Rev. Lett. by Faber (2016)
  113. F. Legrain , A. v.Roekeghem , S.Curtarolo , J.Carrete , G. K. H.Madsen and N.Mingo , arXiv:1803.09827, 2018 by Legrain (2018)
  114. 10.1007/s10853-018-1987-z / J. Mater. Sci. by Pilania (2018)
  115. 10.1021/acs.jpcc.8b01667 / J. Phys. Chem. C by Chen (2018)
  116. 10.1016/j.ces.2011.05.050 / Chem. Eng. Sci. by Salciccioli (2011)
  117. 10.1103/PhysRevB.64.184307 / Phys. Rev. B: Condens. Matter Mater. Phys. by Van der Ven (2001)
  118. 10.1038/nmat3568 / Nat. Mater. by Curtarolo (2013)
  119. 10.1002/anie.201703114 / Angew. Chem., Int. Ed. by Behler (2017)
  120. 10.1063/1.4950815 / J. Chem. Phys. by Gastegger (2016)
  121. 10.1002/qua.25115 / Int. J. Quantum Chem. by Boes (2016)
  122. 10.1103/PhysRevB.83.153101 / Phys. Rev. B: Condens. Matter Mater. Phys. by Artrith (2011)
  123. 10.1103/PhysRevB.85.045439 / Phys. Rev. B: Condens. Matter Mater. Phys. by Artrith (2012)
  124. 10.1016/j.commatsci.2015.11.047 / Comput. Mater. Sci. by Artrith (2016)
  125. 10.1080/08927022.2017.1420185 / Mol. Simul. by Wang (2018)
  126. 10.1016/j.cattod.2018.03.045 / Catal. Today by Gao (2018)
  127. 10.1039/C5NR03903G / Nanoscale by Ouyang (2015)
  128. 10.1021/acs.jctc.6b00994 / J. Chem. Theory Comput. by Zhai (2016)
  129. 10.1016/j.commatsci.2015.07.046 / Comput. Mater. Sci. by Artrith (2015)
  130. 10.1021/nl5005674 / Nano Lett. by Artrith (2014)
  131. 10.1039/C6CP05711J / Phys. Chem. Chem. Phys. by Natarajan (2016)
  132. 10.1021/acs.jpclett.7b00784 / J. Phys. Chem. Lett. by Shakouri (2017)
  133. 10.1080/08927022.2016.1274984 / Mol. Simul. by Boes (2017)
  134. 10.1021/acscatal.7b01648 / ACS Catal. by Ulissi (2017)
  135. 10.1039/C4CP05198J / Phys. Chem. Chem. Phys. by Ostadhossein (2015)
  136. 10.1063/1.5017661 / J. Chem. Phys. by Artrith (2018)
  137. 10.1103/PhysRevB.97.094106 / Phys. Rev. B by Onat (2018)
  138. 10.1063/1.5016317 / J. Chem. Phys. by Fujikake (2018)
  139. 10.1073/pnas.1619940114 / Proc. Natl. Acad. Sci. U. S. A. by Yan (2017)
  140. 10.1038/s41467-018-05169-6 / Nat. Commun. by Ziletti (2018)
  141. 10.1107/S205225251700714X / IUCrJ by Park (2017)
  142. 10.1021/acs.chemmater.6b02905 / Chem. Mater. by Oliynyk (2016)
  143. 10.1021/jacs.7b08460 / J. Am. Chem. Soc. by Oliynyk (2017)
  144. 10.1038/nmat1691 / Nat. Mater. by Fischer (2006)
  145. 10.1021/acs.chemmater.7b02399 / Chem. Mater. by Sun (2017)
  146. 10.1021/cm100795d / Chem. Mater. by Hautier (2010)
  147. 10.1021/jacs.8b03913 / J. Am. Chem. Soc. by Ryan (2018)
  148. 10.1016/j.cpc.2012.05.008 / Comput. Phys. Commun. by Wang (2012)
  149. 10.1016/j.cpc.2010.07.048 / Comput. Phys. Commun. by Lonie (2011)
  150. 10.1016/j.cpc.2011.06.003 / Comput. Phys. Commun. by Lonie (2011)
  151. 10.1021/acs.inorgchem.6b00881 / Inorg. Chem. by Zhou (2016)
  152. 10.1021/acs.jpclett.8b00616 / J. Phys. Chem. Lett. by Zhao (2018)
  153. 10.1039/C7TA04941B / J. Mater. Chem. A by Wang (2017)
  154. 10.1021/jacs.5b10180 / J. Am. Chem. Soc. by Shamp (2016)
  155. 10.1021/acs.chemmater.6b02724 / Chem. Mater. by Oliynyk (2016)
  156. 10.1021/acs.jpcb.7b05296 / J. Phys. Chem. B by Legrain (2018)
  157. 10.1103/PhysRevMaterials.2.043802 / Phys. Rev. Mater. by Balachandran (2018)
  158. 10.1021/acsnano.8b03569 / ACS Nano by Ma (2018)
  159. 10.1126/sciadv.aar4206 / Sci. Adv. by Peurifoy (2018)
  160. 10.1002/adma.201702884 / Adv. Mater. by Yuan (2018)
  161. 10.1038/nmat4717 / Nat. Mater. by Gómez-Bombarelli (2016)
  162. 10.1038/s41467-018-06625-z / Nat. Commun. by Zhuo (2018)
  163. 10.1039/C6EE00123H / Energy Environ. Sci. by Haregewoin (2016)
  164. 10.1039/C6CP05800K / Phys. Chem. Chem. Phys. by Park (2016)
  165. 10.1021/acs.jpclett.8b00635 / J. Phys. Chem. Lett. by Nagasawa (2018)
  166. W. Sun , C.Bartel , E.Arca , S.Bauers , B.Matthews , B.Orvañanos , B.-R.Chen , M. F.Toney , L. T.Schelhas , W.Tumas , J.Tate , A.Zakutayev , S.Lany , A.Holder and G.Ceder , arXiv:1809.09202, 2018 by Sun (2018)
  167. 10.1039/C6EE02697D / Energy. Environ. Sci. by Sendek (2017)
  168. 10.1186/1758-2946-1-8 / J. Cheminf. by Ertl (2009)
  169. 10.1038/nature17439 / Nature by Raccuglia (2016)
  170. 10.1002/anie.201107947 / Angew. Chem., Int. Ed. by Hummelshøj (2012)
  171. 10.1039/C8SC03077D / Chem. Sci. by Stein (2019)
  172. 10.1038/s41524-019-0172-5 / npj Comput. Mater. by Umehara (2019)
  173. 10.1126/scirobotics.aat5559 / Science Robotics by Roch (2018)
  174. 10.1021/acscentsci.8b00307 / ACS Cent. Sci. by Häse (2018)
Dates
Type When
Created 6 years, 3 months ago (April 30, 2019, 6:06 a.m.)
Deposited 1 year, 1 month ago (July 17, 2024, 8:51 a.m.)
Indexed 6 hours, 11 minutes ago (Aug. 23, 2025, 9:49 p.m.)
Issued 6 years, 7 months ago (Jan. 1, 2019)
Published 6 years, 7 months ago (Jan. 1, 2019)
Published Online 6 years, 7 months ago (Jan. 1, 2019)
Funders 2
  1. KAIST 10.13039/501100007107 Korea Advanced Institute of Science and Technology

    Region: Asia

    pri (Universities (academic only))

    Labels2
    1. 한국과학기술원
    2. KAIST
  2. National Research Foundation of Korea 10.13039/501100003725

    Region: Asia

    pri (Trusts, charities, foundations (both public and private))

    Labels3
    1. 한국연구재단이 창의적 연구와
    2. National Research Foundation (South Korea)
    3. NRF
    Awards1
    1. 2018M3D1A1089310

@article{Gu_2019, title={Machine learning for renewable energy materials}, volume={7}, ISSN={2050-7496}, url={http://dx.doi.org/10.1039/c9ta02356a}, DOI={10.1039/c9ta02356a}, number={29}, journal={Journal of Materials Chemistry A}, publisher={Royal Society of Chemistry (RSC)}, author={Gu, Geun Ho and Noh, Juhwan and Kim, Inkyung and Jung, Yousung}, year={2019}, pages={17096–17117} }