Crossref journal-article
Royal Society of Chemistry (RSC)
Molecular Systems Design & Engineering (292)
Abstract

In this paper, we consider the problem of designing a compact training set comprising the most informative molecules from a specified library to build data-driven molecular property models.

Bibliography

Li, B., & Rangarajan, S. (2019). Designing compact training sets for data-driven molecular property prediction through optimal exploitation and exploration. Molecular Systems Design & Engineering, 4(5), 1048–1057.

Authors 2
  1. Bowen Li (first)
  2. Srinivas Rangarajan (additional)
References 46 Referenced 17
  1. 10.1007/s10800-011-0348-2 / J. Appl. Electrochem. by Weber (2011)
  2. 10.1021/acs.jpclett.5b01660 / J. Phys. Chem. Lett. by Ma (2015)
  3. 10.1103/PhysRevLett.108.068701 / Phys. Rev. Lett. by Yu (2012)
  4. 10.1021/ct400195d / J. Chem. Theory Comput. by Hansen (2013)
  5. 10.1021/acs.jpclett.5b00831 / J. Phys. Chem. Lett. by Hansen (2015)
  6. 10.1021/ci100050t / J. Chem. Inf. Model. by Rogers (2010)
  7. 10.1002/qua.24954 / Int. J. Quantum Chem. by Rupp (2015)
  8. 10.1021/ci400187y / J. Chem. Inf. Model. by Lusci (2013)
  9. D. K. Duvenaud , D.Maclaurin , J.Iparraguirre , R.Bombarell , T.Hirzel , A.Aspuru-Guzik and R. P.Adams , Advances in neural information processing systems , Curran Associates , NY, USA , 2015 , pp. 2224–2232 / Advances in neural information processing systems by Duvenaud (2015)
  10. 10.1007/s10822-016-9938-8 / J. Comput.-Aided Mol. Des. by Kearnes (2016)
  11. 10.4155/fmc-2016-0197 / Future Med. Chem. by Reker (2017)
  12. 10.1021/acs.jcim.5b00332 / J. Chem. Inf. Model. by Lang (2016)
  13. 10.1016/j.drudis.2014.12.004 / Drug Discovery Today by Reker (2015)
  14. 10.1021/ci049810a / J. Chem. Inf. Comput. Sci. by Liu (2004)
  15. Y.-H. Tang and W. A.de Jong , 2018 , arXiv preprint arXiv:1810.07310 by Tang (2018)
  16. 10.1063/1.5005095 / J. Chem. Phys. by Gubaev (2018)
  17. 10.1063/1.1744539 / J. Chem. Phys. by Benson (1958)
  18. 10.1021/cr60259a002 / Chem. Rev. by Benson (1969)
  19. 10.1021/j100632a019 / J. Phys. Chem. by Eigenmann (1973)
  20. 10.1021/cr00023a005 / Chem. Rev. by Cohen (1993)
  21. 10.1039/C7RE00210F / React. Chem. Eng. by Gu (2018)
  22. {'key': 'C9ME00078J-(cit22)/*[position()=1]', 'first-page': '2825', 'volume': '12', 'author': 'Pedregosa', 'year': '2011', 'journal-title': 'J. Mach. Learn. Res.'} / J. Mach. Learn. Res. by Pedregosa (2011)
  23. M. A. Johnson and G. M.Maggiora , Concepts and applications of molecular similarity , Wiley , NY, USA , 1990 / Concepts and applications of molecular similarity by Johnson (1990)
  24. 10.1038/nrd2220 / Nat. Rev. Drug Discovery by Hajduk (2007)
  25. 10.1016/S1367-5931(98)80012-4 / Curr. Opin. Chem. Biol. by Bures (1998)
  26. 10.1007/s11030-006-8697-1 / Mol. Diversity by Maldonado (2006)
  27. 10.1002/qsar.200290002 / Quant. Struct.-Act. Relat. by Ashton (2002)
  28. 10.1613/jair.295 / J. Artif. Intell. Res. by Cohn (1996)
  29. D. D. Lewis and J.Catlett , Machine Learning Proceedings 1994 , Elsevier , NJ, USA , 1994 , pp. 148–156 / Machine Learning Proceedings 1994 by Lewis (1994)
  30. {'key': 'C9ME00078J-(cit31)/*[position()=1]', 'first-page': '45', 'volume': '2', 'author': 'Tong', 'year': '2001', 'journal-title': 'J. Mach. Learn. Res.'} / J. Mach. Learn. Res. by Tong (2001)
  31. K. Yu , J.Bi and V.Tresp , Proceedings of the 23rd international conference on Machine learning , ACM , NY, USA , 2006 , pp. 1081–1088 / Proceedings of the 23rd international conference on Machine learning by Yu (2006)
  32. H. S. Seung , M.Opper and H.Sompolinsky , Proceedings of the fifth annual workshop on Computational learning theory , ACM , NY ,USA , 1992 , pp. 287–294 / Proceedings of the fifth annual workshop on Computational learning theory by Seung (1992)
  33. S.-J. Huang , R.Jin and Z.-H.Zhou , Advances in neural information processing systems , Curran Associates , NY, USA , 2010 , pp. 892–900 / Advances in neural information processing systems by Huang (2010)
  34. A. Atkinson , A.Donev and R.Tobias , Optimum experimental designs, with SAS , Oxford University Press , NY, USA , 2007 , vol. 34 (10.1093/oso/9780199296590.001.0001) / Optimum experimental designs, with SAS by Atkinson (2007)
  35. 10.1093/biomet/12.1-2.1 / Biometrika by Smith (1918)
  36. N. R. Draper and H.Smith , Applied regression analysis , John Wiley & Sons , NJ, USA , 1998 , vol. 326 (10.1002/9781118625590) / Applied regression analysis by Draper (1998)
  37. {'key': 'C9ME00078J-(cit38)/*[position()=1]', 'first-page': '203', 'volume': '16', 'author': 'Mitchell', 'year': '1974', 'journal-title': 'Technometrics'} / Technometrics by Mitchell (1974)
  38. 10.1214/aoms/1177729893 / Ann. Math. Stat. by Sherman (1950)
  39. R. S. Sutton and A. G.Barto , Reinforcement learning: An introduction , MIT press , Cambridge, MA, USA , 2018 / Reinforcement learning: An introduction by Sutton (2018)
  40. M. Tokic and G.Palm , Annual Conference on Artificial Intelligence , Springer , Berlin, Heidelberg , 2011 , pp. 335–346 / Annual Conference on Artificial Intelligence by Tokic (2011)
  41. M. Wunder , M. L.Littman and M.Babes , Proceedings of the 27th International Conference on Machine Learning (ICML-10) , Omnipress , PA, USA , 2010 , pp. 1167–1174 / Proceedings of the 27th International Conference on Machine Learning (ICML-10) by Wunder (2010)
  42. 10.2533/chimia.2015.182 / Chimia by Ramakrishnan (2015)
  43. 10.1021/ja902302h / J. Am. Chem. Soc. by Blum (2009)
  44. 10.1103/PhysRevLett.108.058301 / Phys. Rev. Lett. by Rupp (2012)
  45. 10.1016/j.combustflame.2016.11.006 / Combust. Flame by Buerger (2017)
  46. 10.1021/acs.jpcc.6b06430 / J. Phys. Chem. C by Gu (2016)
Dates
Type When
Created 5 years, 11 months ago (Aug. 27, 2019, 11:05 a.m.)
Deposited 1 year ago (July 22, 2024, 12:32 p.m.)
Indexed 1 month, 1 week ago (July 8, 2025, 1:25 p.m.)
Issued 6 years, 7 months ago (Jan. 1, 2019)
Published 6 years, 7 months ago (Jan. 1, 2019)
Published Online 6 years, 7 months ago (Jan. 1, 2019)
Funders 1
  1. Lehigh University 10.13039/100008234

    Region: Americas

    pri (Universities (academic only))

    Labels2
    1. Lehigh
    2. LU

@article{Li_2019, title={Designing compact training sets for data-driven molecular property prediction through optimal exploitation and exploration}, volume={4}, ISSN={2058-9689}, url={http://dx.doi.org/10.1039/c9me00078j}, DOI={10.1039/c9me00078j}, number={5}, journal={Molecular Systems Design & Engineering}, publisher={Royal Society of Chemistry (RSC)}, author={Li, Bowen and Rangarajan, Srinivas}, year={2019}, pages={1048–1057} }