Bibliography
Meredig, B., Antono, E., Church, C., Hutchinson, M., Ling, J., Paradiso, S., Blaiszik, B., Foster, I., Gibbons, B., Hattrick-Simpers, J., Mehta, A., & Ward, L. (2018). Can machine learning identify the next high-temperature superconductor? Examining extrapolation performance for materials discovery. Molecular Systems Design & Engineering, 3(5), 819â825.
Authors
12
- Bryce Meredig (first)
- Erin Antono (additional)
- Carena Church (additional)
- Maxwell Hutchinson (additional)
- Julia Ling (additional)
- Sean Paradiso (additional)
- Ben Blaiszik (additional)
- Ian Foster (additional)
- Brenna Gibbons (additional)
- Jason Hattrick-Simpers (additional)
- Apurva Mehta (additional)
- Logan Ward (additional)
References
37
Referenced
188
10.1557/mrs.2016.93
/ MRS Bull. by Hill (2016)10.1016/j.cossms.2016.07.002
/ Curr. Opin. Solid State Mater. Sci. by Ward (2017)10.1186/2193-9772-3-8
/ Integr. Mater. Manuf. Innov. by Agrawal (2014)10.1021/acs.jctc.7b00577
/ J. Chem. Theory Comput. by Faber (2017)10.1103/PhysRevB.89.094104
/ Phys. Rev. B: Condens. Matter Mater. Phys. by Meredig (2014)10.1021/acs.chemmater.7b00789
/ Chem. Mater. by Legrain (2017)10.1103/PhysRevB.93.115104
/ Phys. Rev. B by Lee (2016)10.1103/PhysRevB.95.214102
/ Phys. Rev. B by Ubaru (2017)10.1016/j.actamat.2017.05.009
/ Acta Mater. by Gomberg (2017)10.1021/acs.chemmater.6b02724
/ Chem. Mater. by Oliynyk (2016)10.1021/acs.accounts.7b00490
/ Acc. Chem. Res. by Oliynyk (2018)10.1038/ncomms11241
/ Nat. Commun. by Xue (2016)10.1016/j.matdes.2017.06.007
/ Mater. Des. by Conduit (2017)10.1038/nature23894
/ Nature by Martin (2017)10.1002/polb.24117
/ J. Polym. Sci., Part B: Polym. Phys. by Wu (2016)- J. Bennett , S.Lanning and others, in Proceedings of KDD cup and workshop , 2007 , vol. 2007 , p. 35 / Proceedings of KDD cup and workshop by Bennett (2007)
- Y. Zhou , D.Wilkinson , R.Schreiber and R.Pan , in International Conference on Algorithmic Applications in Management , 2008 , pp. 337–348 / International Conference on Algorithmic Applications in Management by Zhou (2008)
{'key': 'C8ME00012C-(cit19)/*[position()=1]', 'first-page': '2579', 'volume': '9', 'author': 'van der Maaten', 'year': '2008', 'journal-title': 'J. Mach. Learn. Res.'}
/ J. Mach. Learn. Res. by van der Maaten (2008)10.1038/npjcompumats.2016.28
/ npj Comput. Mater. by Ward (2016)10.1111/ecog.02881
/ Ecography by Roberts (2017)- V. Stanev , C.Oses , A. G.Kusne , E.Rodriguez , J.Paglione , S.Curtarolo and I.Takeuchi , 2017 , arXiv Prepr. arXiv1709.02727 by Stanev (2017)
- D. Pelleg , A. W.Moore and others , in Icml , 2000 , vol. 1 , pp. 727–734 / Icml by Pelleg (2000)
- G. Hamerly and C.Elkan , in Advances in neural information processing systems , 2004 , pp. 281–288 / Advances in neural information processing systems by Hamerly (2004)
10.1016/0377-0427(87)90125-7
/ J. Comput. Appl. Math. by Rousseeuw (1987)10.1007/s40192-017-0098-z
/ Integr. Mater. Manuf. Innov. by Ling (2017)10.1038/srep06367
/ Sci. Rep. by Kusne (2014)10.1016/j.md.2016.04.001
/ Mater. Discov. by Ueno (2016)- T. M. Dieb and K.Tsuda , in Nanoinformatics , Springer , 2018 , pp. 65–74 / Nanoinformatics by Dieb (2018)
10.1063/1.5023802
/ J. Chem. Phys. by Smith (2018)10.1126/sciadv.aaq1566
/ Sci. Adv. by Ren (2018){'key': 'C8ME00012C-(cit32)/*[position()=1]', 'first-page': '2825', 'volume': '12', 'author': 'Pedregosa', 'year': '2011', 'journal-title': 'J. Mach. Learn. Res.'}
/ J. Mach. Learn. Res. by Pedregosa (2011){'key': 'C8ME00012C-(cit33)/*[position()=1]', 'first-page': '18', 'volume': '2', 'author': 'Liaw', 'year': '2002', 'journal-title': 'R news'}
/ R news by Liaw (2002)10.1080/00401706.1970.10488634
/ Technometrics by Hoerl (1970)10.1021/ci500747n
/ J. Chem. Inf. Model. by Ma (2015)10.1198/016214505000001230
/ J. Am. Stat. Assoc. by Lin (2006)10.1021/acs.jpclett.8b00170
/ J. Phys. Chem. Lett. by Janet (2018)- M. L. Hutchinson , E.Antono , B. M.Gibbons , S.Paradiso , J.Ling and B.Meredig , 2017 , arXiv Prepr. arXiv1711.05099 by Hutchinson (2017)
Dates
Type | When |
---|---|
Created | 7 years ago (Aug. 17, 2018, 8:14 a.m.) |
Deposited | 1 year, 4 months ago (April 17, 2024, 5 p.m.) |
Indexed | 1 week, 1 day ago (Aug. 12, 2025, 6:18 p.m.) |
Issued | 7 years, 7 months ago (Jan. 1, 2018) |
Published | 7 years, 7 months ago (Jan. 1, 2018) |
Published Online | 7 years, 7 months ago (Jan. 1, 2018) |
Funders
2
National Institute of Standards and Technology
10.13039/100000161
Region: Americas
gov (National government)
Labels
4
- U.S. National Institute of Standards and Technology
- National Institute for Standards and Technology
- U.S. Department of Commerce's National Institute of Standards and Technology
- NIST
Awards
1
- 60NANB15D077
U.S. Department of Energy
10.13039/100000015
Region: Americas
gov (National government)
Labels
8
- Energy Department
- Department of Energy
- United States Department of Energy
- ENERGY.GOV
- US Department of Energy
- USDOE
- DOE
- USADOE
Awards
1
- DE-AC02-06CH11357
@article{Meredig_2018, title={Can machine learning identify the next high-temperature superconductor? Examining extrapolation performance for materials discovery}, volume={3}, ISSN={2058-9689}, url={http://dx.doi.org/10.1039/c8me00012c}, DOI={10.1039/c8me00012c}, number={5}, journal={Molecular Systems Design & Engineering}, publisher={Royal Society of Chemistry (RSC)}, author={Meredig, Bryce and Antono, Erin and Church, Carena and Hutchinson, Maxwell and Ling, Julia and Paradiso, Sean and Blaiszik, Ben and Foster, Ian and Gibbons, Brenna and Hattrick-Simpers, Jason and Mehta, Apurva and Ward, Logan}, year={2018}, pages={819–825} }