Crossref journal-article
Royal Society of Chemistry (RSC)
Chemical Science (292)
Abstract

Polymorphism is common in molecular crystals, whose energy landscapes usually contain many structures with similar stability, but very different physical–chemical properties. Machine-learning techniques can accelerate the evaluation of energy and properties by side-stepping accurate but demanding electronic-structure calculations, and provide a data-driven classification of the most important molecular packing motifs.

Bibliography

Musil, F., De, S., Yang, J., Campbell, J. E., Day, G. M., & Ceriotti, M. (2018). Machine learning for the structure–energy–property landscapes of molecular crystals. Chemical Science, 9(5), 1289–1300.

Authors 6
  1. Félix Musil (first)
  2. Sandip De (additional)
  3. Jack Yang (additional)
  4. Joshua E. Campbell (additional)
  5. Graeme M. Day (additional)
  6. Michele Ceriotti (additional)
References 79 Referenced 176
  1. 10.1039/b501304f / Chem. Commun. by Vishweshwar (2005)
  2. 10.1039/C5CC08216A / Chem. Commun. by Duggirala (2016)
  3. 10.1038/nature02498 / Nature by Forrest (2004)
  4. 10.1038/nmat1699 / Nat. Mater. by Muccini (2006)
  5. 10.1038/176325a0 / Nature by Hodgkin (1955)
  6. 10.1038/nmat1406 / Nat. Mater. by Bernstein (2005)
  7. 10.1021/ar100040r / Acc. Chem. Res. by Yu (2010)
  8. 10.1023/A:1011052932607 / Pharm. Res. by Bauer (2001)
  9. 10.1107/S2052520616007447 / Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. by Reilly (2016)
  10. 10.1038/nature21419 / Nature by Pulido (2017)
  11. 10.1039/C7TC02553J / J. Mater. Chem. C by Campbell (2017)
  12. 10.1063/1.4812323 / APL Mater. by Jain (2013)
  13. 10.1557/mrs.2012.194 / MRS Bull. by White (2012)
  14. 10.1016/j.commatsci.2015.09.013 / Comput. Mater. Sci. by Pizzi (2016)
  15. 10.1103/PhysRevLett.113.055701 / Phys. Rev. Lett. by Reilly (2014)
  16. 10.1039/b406598k / CrystEngComm by Price (2004)
  17. 10.1107/S2052520616009227 / Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. by Curtis (2016)
  18. 10.1039/C5CE00045A / CrystEngComm by Nyman (2015)
  19. 10.1103/PhysRevLett.117.115702 / Phys. Rev. Lett. by Rossi (2016)
  20. 10.1021/cg0498148 / Cryst. Growth Des. by Day (2004)
  21. D.Wales , Energy landscapes: Applications to clusters, biomolecules and glasses , Cambridge University Press , 2003 / Energy landscapes: Applications to clusters, biomolecules and glasses by Wales (2003)
  22. 10.1103/PhysRevLett.106.225502 / Phys. Rev. Lett. by De (2011)
  23. 10.1073/pnas.1003293107 / Proc. Natl. Acad. Sci. U. S. A. by Ferguson (2010)
  24. 10.1073/pnas.1108486108 / Proc. Natl. Acad. Sci. U. S. A. by Ceriotti (2011)
  25. 10.1107/S0108768189003794 / Acta Crystallogr., Sect. B: Struct. Sci. by Desiraju (1989)
  26. 10.1107/S0108768189012929 / Acta Crystallogr., Sect. B: Struct. Sci. by Etter (1990)
  27. 10.1103/PhysRevLett.98.146401 / Phys. Rev. Lett. by Behler (2007)
  28. 10.1103/PhysRevLett.104.136403 / Phys. Rev. Lett. by Bartók (2010)
  29. D. Jasrasaria, E. O. Pyzer-Knapp, D. Rappoport and A. Aspuru-Guzik, 2016, http://arxiv.org/abs/1608.05747
  30. 10.1021/acs.jctc.5b00099 / J. Chem. Theory Comput. by Ramakrishnan (2015)
  31. 10.1063/1.4978623 / J. Chem. Phys. by Ferré (2017)
  32. 10.1103/PhysRevLett.117.135502 / Phys. Rev. Lett. by Faber (2016)
  33. 10.1103/PhysRevB.95.144110 / Phys. Rev. B: Condens. Matter Mater. Phys. by Seko (2017)
  34. 10.1038/srep34256 / Sci. Rep. by de Jong (2016)
  35. 10.1002/adfm.201501919 / Adv. Funct. Mater. by Pyzer-Knapp (2015)
  36. {'key': 'C7SC04665K/cit36/1', 'first-page': '011019', 'volume': '4', 'author': 'Carrete', 'year': '2014', 'journal-title': 'Phys. Rev. X'} / Phys. Rev. X by Carrete (2014)
  37. 10.1021/acs.jcim.6b00332 / J. Chem. Inf. Model. by Kim (2017)
  38. 10.1073/pnas.88.23.10495 / Proc. Natl. Acad. Sci. U. S. A. by Nussinov (1991)
  39. 10.1103/PhysRevLett.107.085504 / Phys. Rev. Lett. by Pietrucci (2011)
  40. 10.1063/1.4900655 / J. Chem. Phys. by Gasparotto (2014)
  41. 10.1039/C6CP00415F / Phys. Chem. Chem. Phys. by De (2016)
  42. 10.1103/PhysRevB.87.184115 / Phys. Rev. B: Condens. Matter Mater. Phys. by Bartók (2013)
  43. 10.1021/ja061827h / J. Am. Chem. Soc. by Valeev (2006)
  44. 10.1021/ja067087u / J. Am. Chem. Soc. by Winkler (2007)
  45. 10.1021/acs.jctc.5b01112 / J. Chem. Theory Comput. by Case (2016)
  46. 10.1039/c004164e / Phys. Chem. Chem. Phys. by Price (2010)
  47. 10.1002/jcc.1074 / J. Comput. Chem. by Williams (2001)
  48. 10.1080/00268970110089432 / Mol. Phys. by Stone (2002)
  49. 10.1103/PhysRevLett.77.3865 / Phys. Rev. Lett. by Perdew (1996)
  50. 10.1002/jcc.20495 / J. Comput. Chem. by Grimme (2006)
  51. {'key': 'C7SC04665K/cit51/1', 'first-page': '395502', 'volume': '21', 'author': 'Giannozzi', 'year': '2009', 'journal-title': 'J. Phys.: Condens. Matter'} / J. Phys.: Condens. Matter by Giannozzi (2009)
  52. 10.1039/C1CE05763D / CrystEngComm by Loots (2012)
  53. 10.1063/1.4828704 / J. Chem. Phys. by Sadeghi (2013)
  54. 10.1186/s13321-017-0192-4 / J. Cheminf. by De (2016)
  55. M.Cuturi , in Advances in Neural Information Processing Systems 26 , ed. C. J. C. Burges , L. Bottou , M. Welling , Z. Ghahramani and K. Q. Weinberger , Curran Associates, Inc. , 2013 , pp. 2292–2300 / Advances in Neural Information Processing Systems 26 by Cuturi (2013)
  56. 10.1126/sciadv.1701816 / Sci. Adv. by Bartok (2017)
  57. C.Berg , J.Christensen and P.Ressel , Harmonic Analysis on Semigroups , 1984 , pp. 86–143 (10.1007/978-1-4612-1128-0_4) / Harmonic Analysis on Semigroups by Berg (1984)
  58. C. E.Rasmussen and C. K. I.Williams , Gaussian processes for machine learning , World Scientific Publishing Company , 2006 , vol. 14 , pp. 69–106 / Gaussian processes for machine learning by Rasmussen (2006)
  59. C.Saunders , A.Gammerman and V.Vovk , Proceedings of the 15th International Conference on Machine Learning , 1998 , pp. 515–521 / Proceedings of the 15th International Conference on Machine Learning by Saunders (1998)
  60. 10.1073/pnas.1108486108 / Proc. Natl. Acad. Sci. U. S. A. by Ceriotti (2011)
  61. 10.1021/ct3010563 / J. Chem. Theory Comput. by Ceriotti (2013)
  62. R. J. G. B.Campello , D.Moulavi , A.Zimek and J.Sander , ACM Transactions on Knowledge Discovery from Data , 2015 , vol. 10 , pp. 1–51 / ACM Transactions on Knowledge Discovery from Data by Campello (2015)
  63. 10.1039/C6CP02261H / Phys. Chem. Chem. Phys. by Nyman (2016)
  64. 10.1021/cg049651n / Cryst. Growth Des. by Day (2005)
  65. 10.1103/PhysRevLett.112.083401 / Phys. Rev. Lett. by De (2014)
  66. 10.1021/acs.jctc.5b00099 / J. Chem. Theory Comput. by Ramakrishnan (2015)
  67. 10.1137/0206041 / SIAM J. Comput. by Rosenkrantz (1977)
  68. 10.1021/acs.jctc.5b00837 / J. Chem. Theory Comput. by Pershin (2015)
  69. 10.1063/1.4867077 / J. Chem. Phys. by Kubas (2014)
  70. 10.1103/PhysRevB.95.094203 / Phys. Rev. B: Condens. Matter Mater. Phys. by Deringer (2017)
  71. 10.1103/PhysRevB.90.104108 / Phys. Rev. B: Condens. Matter Mater. Phys. by Szlachta (2014)
  72. 10.1063/1.3682557 / J. Chem. Phys. by Morawietz (2012)
  73. 10.1103/PhysRevB.83.153101 / Phys. Rev. B: Condens. Matter Mater. Phys. by Artrith (2011)
  74. 10.1103/PhysRevB.85.174103 / Phys. Rev. B: Condens. Matter Mater. Phys. by Sosso (2012)
  75. 10.1039/C7SC02267K / Chem. Sci. by Gastegger (2017)
  76. 10.1063/1.4950815 / J. Chem. Phys. by Gastegger (2016)
  77. 10.1137/16M1075454 / Multiscale Model. Simul. by Hirn (2017)
  78. 10.1063/1.4973380 / J. Chem. Phys. by Yao (2017)
  79. 10.1103/PhysRevLett.108.058301 / Phys. Rev. Lett. by Rupp (2012)
Dates
Type When
Created 7 years, 8 months ago (Dec. 12, 2017, 2:13 p.m.)
Deposited 1 year, 4 months ago (April 17, 2024, 7:38 p.m.)
Indexed 19 minutes ago (Aug. 26, 2025, 11:48 p.m.)
Issued 7 years, 7 months ago (Jan. 1, 2018)
Published 7 years, 7 months ago (Jan. 1, 2018)
Published Online 7 years, 7 months ago (Jan. 1, 2018)
Funders 3
  1. H2020 European Research Council 10.13039/100010663

    Region: Europe

    gov (National government)

    Labels17
    1. H2020 Excellent Science - European Research Council
    2. European Research Council
    3. H2020 Wissenschaftsexzellenz - Für das Einzelziel 'Europäischer Forschungsrat (ERC)'
    4. H2020 Ciencia Excelente - Consejo Europeo de Investigación (CEI)
    5. H2020 Excellence Scientifique - Conseil européen de la recherche (CER)
    6. H2020 Eccellenza Scientifica - Consiglio europeo della ricerca (CER)
    7. H2020 Doskonała Baza Naukowa - Europejska Rada ds. Badań Naukowych (ERBN)
    8. EXCELLENT SCIENCE - European Research Council
    9. WISSENSCHAFTSEXZELLENZ - Für das Einzelziel 'Europäischer Forschungsrat
    10. CIENCIA EXCELENTE - Consejo Europeo de Investigación
    11. EXCELLENCE SCIENTIFIQUE - Conseil européen de la recherche
    12. ECCELLENZA SCIENTIFICA - Consiglio europeo della ricerca
    13. DOSKONAŁA BAZA NAUKOWA - Europejska Rada ds. Badań Naukowych
    14. ERC
    15. CEI
    16. CER
    17. ERBN
    Awards1
    1. 677013-HBMAP
  2. Seventh Framework Programme 10.13039/100011102

    Region: Europe

    gov (National government)

    Labels13
    1. EC Seventh Framework Programm
    2. European Commission Seventh Framework Programme
    3. EU Seventh Framework Programme
    4. European Union Seventh Framework Programme
    5. EU 7th Framework Programme
    6. European Union 7th Framework Programme
    7. Siebten Rahmenprogramm
    8. Séptimo Programa Marco
    9. Septième programme-cadre
    10. Settimo programma quadro
    11. 7th Framework Programme
    12. Seventh EU Framework Programme
    13. FP7
    Awards1
    1. 307358, ERC-stG-2012-ANGLE
  3. Swiss National Science Foundation 10.13039/501100001711 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

    Region: Europe

    pri (Trusts, charities, foundations (both public and private))

    Labels10
    1. Schweizerischer Nationalfonds
    2. Swiss National Science Foundation
    3. Fonds National Suisse de la Recherche Scientifique
    4. Fondo Nazionale Svizzero per la Ricerca Scientifica
    5. Fonds National Suisse
    6. Fondo Nazionale Svizzero
    7. Schweizerische Nationalfonds
    8. SNF
    9. SNSF
    10. FNS
    Awards1
    1. National Center of Competence in Research (NCCR) Materials Revolution: Computational Design and Discovery of Novel Materials (MARVEL)

@article{Musil_2018, title={Machine learning for the structure–energy–property landscapes of molecular crystals}, volume={9}, ISSN={2041-6539}, url={http://dx.doi.org/10.1039/c7sc04665k}, DOI={10.1039/c7sc04665k}, number={5}, journal={Chemical Science}, publisher={Royal Society of Chemistry (RSC)}, author={Musil, Félix and De, Sandip and Yang, Jack and Campbell, Joshua E. and Day, Graeme M. and Ceriotti, Michele}, year={2018}, pages={1289–1300} }