Abstract
Polymorphism is common in molecular crystals, whose energy landscapes usually contain many structures with similar stability, but very different physical–chemical properties. Machine-learning techniques can accelerate the evaluation of energy and properties by side-stepping accurate but demanding electronic-structure calculations, and provide a data-driven classification of the most important molecular packing motifs.
Authors
6
- Félix Musil (first)
- Sandip De (additional)
- Jack Yang (additional)
- Joshua E. Campbell (additional)
- Graeme M. Day (additional)
- Michele Ceriotti (additional)
References
79
Referenced
176
10.1039/b501304f
/ Chem. Commun. by Vishweshwar (2005)10.1039/C5CC08216A
/ Chem. Commun. by Duggirala (2016)10.1038/nature02498
/ Nature by Forrest (2004)10.1038/nmat1699
/ Nat. Mater. by Muccini (2006)10.1038/176325a0
/ Nature by Hodgkin (1955)10.1038/nmat1406
/ Nat. Mater. by Bernstein (2005)10.1021/ar100040r
/ Acc. Chem. Res. by Yu (2010)10.1023/A:1011052932607
/ Pharm. Res. by Bauer (2001)10.1107/S2052520616007447
/ Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. by Reilly (2016)10.1038/nature21419
/ Nature by Pulido (2017)10.1039/C7TC02553J
/ J. Mater. Chem. C by Campbell (2017)10.1063/1.4812323
/ APL Mater. by Jain (2013)10.1557/mrs.2012.194
/ MRS Bull. by White (2012)10.1016/j.commatsci.2015.09.013
/ Comput. Mater. Sci. by Pizzi (2016)10.1103/PhysRevLett.113.055701
/ Phys. Rev. Lett. by Reilly (2014)10.1039/b406598k
/ CrystEngComm by Price (2004)10.1107/S2052520616009227
/ Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. by Curtis (2016)10.1039/C5CE00045A
/ CrystEngComm by Nyman (2015)10.1103/PhysRevLett.117.115702
/ Phys. Rev. Lett. by Rossi (2016)10.1021/cg0498148
/ Cryst. Growth Des. by Day (2004)- D.Wales , Energy landscapes: Applications to clusters, biomolecules and glasses , Cambridge University Press , 2003 / Energy landscapes: Applications to clusters, biomolecules and glasses by Wales (2003)
10.1103/PhysRevLett.106.225502
/ Phys. Rev. Lett. by De (2011)10.1073/pnas.1003293107
/ Proc. Natl. Acad. Sci. U. S. A. by Ferguson (2010)10.1073/pnas.1108486108
/ Proc. Natl. Acad. Sci. U. S. A. by Ceriotti (2011)10.1107/S0108768189003794
/ Acta Crystallogr., Sect. B: Struct. Sci. by Desiraju (1989)10.1107/S0108768189012929
/ Acta Crystallogr., Sect. B: Struct. Sci. by Etter (1990)10.1103/PhysRevLett.98.146401
/ Phys. Rev. Lett. by Behler (2007)10.1103/PhysRevLett.104.136403
/ Phys. Rev. Lett. by Bartók (2010)- D. Jasrasaria, E. O. Pyzer-Knapp, D. Rappoport and A. Aspuru-Guzik, 2016, http://arxiv.org/abs/1608.05747
10.1021/acs.jctc.5b00099
/ J. Chem. Theory Comput. by Ramakrishnan (2015)10.1063/1.4978623
/ J. Chem. Phys. by Ferré (2017)10.1103/PhysRevLett.117.135502
/ Phys. Rev. Lett. by Faber (2016)10.1103/PhysRevB.95.144110
/ Phys. Rev. B: Condens. Matter Mater. Phys. by Seko (2017)10.1038/srep34256
/ Sci. Rep. by de Jong (2016)10.1002/adfm.201501919
/ Adv. Funct. Mater. by Pyzer-Knapp (2015){'key': 'C7SC04665K/cit36/1', 'first-page': '011019', 'volume': '4', 'author': 'Carrete', 'year': '2014', 'journal-title': 'Phys. Rev. X'}
/ Phys. Rev. X by Carrete (2014)10.1021/acs.jcim.6b00332
/ J. Chem. Inf. Model. by Kim (2017)10.1073/pnas.88.23.10495
/ Proc. Natl. Acad. Sci. U. S. A. by Nussinov (1991)10.1103/PhysRevLett.107.085504
/ Phys. Rev. Lett. by Pietrucci (2011)10.1063/1.4900655
/ J. Chem. Phys. by Gasparotto (2014)10.1039/C6CP00415F
/ Phys. Chem. Chem. Phys. by De (2016)10.1103/PhysRevB.87.184115
/ Phys. Rev. B: Condens. Matter Mater. Phys. by Bartók (2013)10.1021/ja061827h
/ J. Am. Chem. Soc. by Valeev (2006)10.1021/ja067087u
/ J. Am. Chem. Soc. by Winkler (2007)10.1021/acs.jctc.5b01112
/ J. Chem. Theory Comput. by Case (2016)10.1039/c004164e
/ Phys. Chem. Chem. Phys. by Price (2010)10.1002/jcc.1074
/ J. Comput. Chem. by Williams (2001)10.1080/00268970110089432
/ Mol. Phys. by Stone (2002)10.1103/PhysRevLett.77.3865
/ Phys. Rev. Lett. by Perdew (1996)10.1002/jcc.20495
/ J. Comput. Chem. by Grimme (2006){'key': 'C7SC04665K/cit51/1', 'first-page': '395502', 'volume': '21', 'author': 'Giannozzi', 'year': '2009', 'journal-title': 'J. Phys.: Condens. Matter'}
/ J. Phys.: Condens. Matter by Giannozzi (2009)10.1039/C1CE05763D
/ CrystEngComm by Loots (2012)10.1063/1.4828704
/ J. Chem. Phys. by Sadeghi (2013)10.1186/s13321-017-0192-4
/ J. Cheminf. by De (2016)- M.Cuturi , in Advances in Neural Information Processing Systems 26 , ed. C. J. C. Burges , L. Bottou , M. Welling , Z. Ghahramani and K. Q. Weinberger , Curran Associates, Inc. , 2013 , pp. 2292–2300 / Advances in Neural Information Processing Systems 26 by Cuturi (2013)
10.1126/sciadv.1701816
/ Sci. Adv. by Bartok (2017)-
C.Berg , J.Christensen and P.Ressel , Harmonic Analysis on Semigroups , 1984 , pp. 86–143
(
10.1007/978-1-4612-1128-0_4
) / Harmonic Analysis on Semigroups by Berg (1984) - C. E.Rasmussen and C. K. I.Williams , Gaussian processes for machine learning , World Scientific Publishing Company , 2006 , vol. 14 , pp. 69–106 / Gaussian processes for machine learning by Rasmussen (2006)
- C.Saunders , A.Gammerman and V.Vovk , Proceedings of the 15th International Conference on Machine Learning , 1998 , pp. 515–521 / Proceedings of the 15th International Conference on Machine Learning by Saunders (1998)
10.1073/pnas.1108486108
/ Proc. Natl. Acad. Sci. U. S. A. by Ceriotti (2011)10.1021/ct3010563
/ J. Chem. Theory Comput. by Ceriotti (2013)- R. J. G. B.Campello , D.Moulavi , A.Zimek and J.Sander , ACM Transactions on Knowledge Discovery from Data , 2015 , vol. 10 , pp. 1–51 / ACM Transactions on Knowledge Discovery from Data by Campello (2015)
10.1039/C6CP02261H
/ Phys. Chem. Chem. Phys. by Nyman (2016)10.1021/cg049651n
/ Cryst. Growth Des. by Day (2005)10.1103/PhysRevLett.112.083401
/ Phys. Rev. Lett. by De (2014)10.1021/acs.jctc.5b00099
/ J. Chem. Theory Comput. by Ramakrishnan (2015)10.1137/0206041
/ SIAM J. Comput. by Rosenkrantz (1977)10.1021/acs.jctc.5b00837
/ J. Chem. Theory Comput. by Pershin (2015)10.1063/1.4867077
/ J. Chem. Phys. by Kubas (2014)10.1103/PhysRevB.95.094203
/ Phys. Rev. B: Condens. Matter Mater. Phys. by Deringer (2017)10.1103/PhysRevB.90.104108
/ Phys. Rev. B: Condens. Matter Mater. Phys. by Szlachta (2014)10.1063/1.3682557
/ J. Chem. Phys. by Morawietz (2012)10.1103/PhysRevB.83.153101
/ Phys. Rev. B: Condens. Matter Mater. Phys. by Artrith (2011)10.1103/PhysRevB.85.174103
/ Phys. Rev. B: Condens. Matter Mater. Phys. by Sosso (2012)10.1039/C7SC02267K
/ Chem. Sci. by Gastegger (2017)10.1063/1.4950815
/ J. Chem. Phys. by Gastegger (2016)10.1137/16M1075454
/ Multiscale Model. Simul. by Hirn (2017)10.1063/1.4973380
/ J. Chem. Phys. by Yao (2017)10.1103/PhysRevLett.108.058301
/ Phys. Rev. Lett. by Rupp (2012)
Dates
Type | When |
---|---|
Created | 7 years, 8 months ago (Dec. 12, 2017, 2:13 p.m.) |
Deposited | 1 year, 4 months ago (April 17, 2024, 7:38 p.m.) |
Indexed | 19 minutes ago (Aug. 26, 2025, 11:48 p.m.) |
Issued | 7 years, 7 months ago (Jan. 1, 2018) |
Published | 7 years, 7 months ago (Jan. 1, 2018) |
Published Online | 7 years, 7 months ago (Jan. 1, 2018) |
Funders
3
H2020 European Research Council
10.13039/100010663
Region: Europe
gov (National government)
Labels
17
- H2020 Excellent Science - European Research Council
- European Research Council
- H2020 Wissenschaftsexzellenz - Für das Einzelziel 'Europäischer Forschungsrat (ERC)'
- H2020 Ciencia Excelente - Consejo Europeo de Investigación (CEI)
- H2020 Excellence Scientifique - Conseil européen de la recherche (CER)
- H2020 Eccellenza Scientifica - Consiglio europeo della ricerca (CER)
- H2020 Doskonała Baza Naukowa - Europejska Rada ds. Badań Naukowych (ERBN)
- EXCELLENT SCIENCE - European Research Council
- WISSENSCHAFTSEXZELLENZ - Für das Einzelziel 'Europäischer Forschungsrat
- CIENCIA EXCELENTE - Consejo Europeo de Investigación
- EXCELLENCE SCIENTIFIQUE - Conseil européen de la recherche
- ECCELLENZA SCIENTIFICA - Consiglio europeo della ricerca
- DOSKONAŁA BAZA NAUKOWA - Europejska Rada ds. Badań Naukowych
- ERC
- CEI
- CER
- ERBN
Awards
1
- 677013-HBMAP
Seventh Framework Programme
10.13039/100011102
Region: Europe
gov (National government)
Labels
13
- EC Seventh Framework Programm
- European Commission Seventh Framework Programme
- EU Seventh Framework Programme
- European Union Seventh Framework Programme
- EU 7th Framework Programme
- European Union 7th Framework Programme
- Siebten Rahmenprogramm
- Séptimo Programa Marco
- Septième programme-cadre
- Settimo programma quadro
- 7th Framework Programme
- Seventh EU Framework Programme
- FP7
Awards
1
- 307358, ERC-stG-2012-ANGLE
Swiss National Science Foundation
10.13039/501100001711
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen ForschungRegion: Europe
pri (Trusts, charities, foundations (both public and private))
Labels
10
- Schweizerischer Nationalfonds
- Swiss National Science Foundation
- Fonds National Suisse de la Recherche Scientifique
- Fondo Nazionale Svizzero per la Ricerca Scientifica
- Fonds National Suisse
- Fondo Nazionale Svizzero
- Schweizerische Nationalfonds
- SNF
- SNSF
- FNS
Awards
1
- National Center of Competence in Research (NCCR) Materials Revolution: Computational Design and Discovery of Novel Materials (MARVEL)
@article{Musil_2018, title={Machine learning for the structure–energy–property landscapes of molecular crystals}, volume={9}, ISSN={2041-6539}, url={http://dx.doi.org/10.1039/c7sc04665k}, DOI={10.1039/c7sc04665k}, number={5}, journal={Chemical Science}, publisher={Royal Society of Chemistry (RSC)}, author={Musil, Félix and De, Sandip and Yang, Jack and Campbell, Joshua E. and Day, Graeme M. and Ceriotti, Michele}, year={2018}, pages={1289–1300} }