Crossref journal-article
Royal Society of Chemistry (RSC)
RSC Advances (292)
Abstract

The d-band centers for eleven metals and their pairwise bimetals for two different structures (1% metal doped- or overlayer-covered metal surfaces) are statistically predicted using machine learning methods from readily available values as descriptors for the target metals.

Bibliography

Takigawa, I., Shimizu, K., Tsuda, K., & Takakusagi, S. (2016). Machine-learning prediction of the d-band center for metals and bimetals. RSC Advances, 6(58), 52587–52595.

Authors 4
  1. Ichigaku Takigawa (first)
  2. Ken-ichi Shimizu (additional)
  3. Koji Tsuda (additional)
  4. Satoru Takakusagi (additional)
References 43 Referenced 143
  1. 10.1016/S0360-0564(02)45013-4 / Adv. Catal. by Hammer (2000)
  2. 10.1016/S1381-1169(96)00348-2 / J. Mol. Catal. A: Chem. by Ruban (1997)
  3. 10.1038/nchem.121 / Nat. Chem. by Nørskov (2009)
  4. 10.1073/pnas.1006652108 / Proc. Natl. Acad. Sci. U. S. A. by Nørskov (2011)
  5. 10.1016/S0021-9517(02)00118-5 / J. Catal. by Toulhoat (2003)
  6. 10.1007/s11244-013-0159-2 / Top. Catal. by Vojvodic (2014)
  7. 10.1021/jp0136359 / J. Phys. Chem. A by Lu (2002)
  8. 10.1039/c3cp50617g / Phys. Chem. Chem. Phys. by Sabbe (2013)
  9. 10.1039/C4CP03406F / Phys. Chem. Chem. Phys. by Abe (2015)
  10. 10.1039/C4CS00470A / Chem. Soc. Rev. by Jiao (2015)
  11. 10.1016/j.electacta.2012.04.062 / Electrochim. Acta by Calle-Vallejo (2012)
  12. 10.1039/C4CP01514B / Phys. Chem. Chem. Phys. by Furukawa (2014)
  13. 10.1039/c1cy00066g / Catal. Sci. Technol. by Zheng (2011)
  14. 10.1021/cs300376u / ACS Catal. by Tamura (2012)
  15. 10.1002/anie.201300130 / Angew. Chem., Int. Ed. by Acerbi (2013)
  16. K. Murphy , Machine Learning: a Probabilistic Perspective, The MIT Press, 2012 / Machine Learning: a Probabilistic Perspective by Murphy (2012)
  17. {'key': 'C6RA04345C-(cit17)/*[position()=1]', 'first-page': '2825', 'volume': '12', 'author': 'Pedregosa', 'year': '2011', 'journal-title': 'J. Mach. Learn. Res.'} / J. Mach. Learn. Res. by Pedregosa (2011)
  18. 10.1021/ct400195d / J. Chem. Theory Comput. by Hansen (2013)
  19. 10.1103/PhysRevLett.108.058301 / Phys. Rev. Lett. by Rupp (2012)
  20. 10.1103/PhysRevLett.114.105503 / Phys. Rev. Lett. by Ghiringhelli (2015)
  21. 10.1103/PhysRevB.85.104104 / Phys. Rev. B: Condens. Matter Mater. Phys. by Saad (2012)
  22. 10.1103/PhysRevB.89.054303 / Phys. Rev. B: Condens. Matter Mater. Phys. by Seko (2014)
  23. 10.1146/annurev-matsci-070214-021132 / Annu. Rev. Mater. Res. by Rajan (2015)
  24. 10.1021/cr200066h / Chem. Rev. by Le (2012)
  25. 10.1016/j.cplett.2004.07.097 / Chem. Phys. Lett. by Okamoto (2004)
  26. 10.1021/ie102477y / Ind. Eng. Chem. Res. by Omata (2011)
  27. 10.1016/j.cattod.2008.02.014 / Catal. Today by Rothenberg (2008)
  28. 10.1039/b921393g / Chem. Soc. Rev. by Maldonado (2010)
  29. 10.1039/c2cy20193c / Catal. Sci. Technol. by Ras (2012)
  30. 10.1039/c3cp42965b / Phys. Chem. Chem. Phys. by Ras (2013)
  31. 10.1039/c3ra45852k / RSC Adv. by Ras (2014)
  32. 10.1021/acs.jpclett.5b01660 / J. Phys. Chem. Lett. by Ma (2015)
  33. 10.1021/cs200462f / ACS Catal. by Xin (2012)
  34. 10.1039/C5CY00932D / Catal. Sci. Technol. by Madaan (2016)
  35. CRC Handbook of Chemistry and Physics, ed. D. R. Lide, CRC Press, London, 83rd edn, 2002 / CRC Handbook of Chemistry and Physics (2002)
  36. 10.1080/01621459.1984.10478083 / J. Am. Stat. Assoc. by Picard (1984)
  37. 10.1080/01621459.1993.10476299 / J. Am. Stat. Assoc. by Shao (1993)
  38. {'key': 'C6RA04345C-(cit38)/*[position()=1]', 'first-page': '2825', 'volume': '12', 'author': 'Pedregosa', 'year': '2011', 'journal-title': 'J. Mach. Learn. Res'} / J. Mach. Learn. Res by Pedregosa (2011)
  39. N. Japkowicz and M.Shah, Evaluating Learning Algorithms: A Classification Perspective, Cambridge University Press, 2011 (10.1017/CBO9780511921803) / Evaluating Learning Algorithms: A Classification Perspective by Japkowicz (2011)
  40. T. Hastie , R.Tibshirani, and J.Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, 2013 / The Elements of Statistical Learning: Data Mining, Inference, and Prediction by Hastie (2013)
  41. 10.1214/aos/1013203451 / Ann. Statist. by Friedman (2001)
  42. T. Chen and T.He, JMLR. Workshop and Conference Proceedings, 2015, vol. 42, pp. 69–80 / JMLR. Workshop and Conference Proceedings by Chen (2015)
  43. T. Chen and C.Guestrin, arXiv:1603.02754, 2016 by Chen (2016)
Dates
Type When
Created 9 years, 3 months ago (May 25, 2016, 4:05 a.m.)
Deposited 1 year, 2 months ago (June 16, 2024, 11:28 p.m.)
Indexed 3 weeks, 4 days ago (July 30, 2025, 8:33 p.m.)
Issued 9 years, 7 months ago (Jan. 1, 2016)
Published 9 years, 7 months ago (Jan. 1, 2016)
Published Online 9 years, 7 months ago (Jan. 1, 2016)
Funders 1
  1. Core Research for Evolutional Science and Technology, Japan Science and Technology Agency

@article{Takigawa_2016, title={Machine-learning prediction of the d-band center for metals and bimetals}, volume={6}, ISSN={2046-2069}, url={http://dx.doi.org/10.1039/c6ra04345c}, DOI={10.1039/c6ra04345c}, number={58}, journal={RSC Advances}, publisher={Royal Society of Chemistry (RSC)}, author={Takigawa, Ichigaku and Shimizu, Ken-ichi and Tsuda, Koji and Takakusagi, Satoru}, year={2016}, pages={52587–52595} }