Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractFluorescently labelled nanoparticles are routinely used in Correlative Light Electron Microscopy (CLEM) to combine the capabilities of two separate microscope platforms: fluorescent light microscopy (LM) and electron microscopy (EM). The inherent assumption is that the fluorescent label observed under LM colocalises well with the electron dense nanoparticle observed in EM. Herein we show, by combining single molecule fluorescent imaging with optical detection of the scattering from single gold nanoparticles, that for a commercially produced sample of 10 nm gold nanoparticles tagged to Alexa-633 there is in fact no colocalisation between the fluorescent signatures of Alexa-633 and the scattering associated with the gold nanoparticle. This shows that the attached gold nanoparticle quenches the fluorescent signal by ~95%, or less likely that the complex has dissociated. In either scenario, the observed fluorescent signal in fact arises from a large population of untagged fluorophores; rendering these labels potentially ineffective and misleading to the field.

Bibliography

Miles, B. T., Greenwood, A. B., Benito-Alifonso, D., Tanner, H., Galan, M. C., Verkade, P., & Gersen, H. (2017). Direct Evidence of Lack of Colocalisation of Fluorescently Labelled Gold Labels Used in Correlative Light Electron Microscopy. Scientific Reports, 7(1).

Authors 7
  1. Benjamin T. Miles (first)
  2. Alexander B. Greenwood (additional)
  3. David Benito-Alifonso (additional)
  4. Hugh Tanner (additional)
  5. M. Carmen Galan (additional)
  6. Paul Verkade (additional)
  7. Henkjan Gersen (additional)
References 25 Referenced 13
  1. Brown, E. & Verkade, P. The use of markers for correlative light electron microscopy. Protoplasma 244, 91–97 (2010). (10.1007/s00709-010-0165-1) / Protoplasma by E Brown (2010)
  2. Kopek, B. G., Shtengel, G., Xu, C. S., Clayton, D. A. & Hess, H. F. Correlative 3d superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes. PNAS 109, 6136–6141 (2012). (10.1073/pnas.1121558109) / PNAS by BG Kopek (2012)
  3. Murai, T., Sato, M., Nishiyama, H., Suga, M. & Sato, C. Ultrastructural analysis of nanogold-labeled cell surface microvilli in liquid by atmospheric scanning electron microscopy and their relevance in cell adhesion. Int. J. Mol. Sci. 14, 20809–20819 (2013). (10.3390/ijms141020809) / Int. J. Mol. Sci. by T Murai (2013)
  4. Van Weering, J. et al. Intracellular membrane traffic at high resolution. Methods Cell Biol. 96, 619–648 (2010). (10.1016/S0091-679X(10)96026-3) / Methods Cell Biol by J Van Weering (2010)
  5. de Boer, P., Hoogenboom, J. P. & Giepmans, B. N. Correlated light and electron microscopy: ultrastructure lights up!. Nat. Methods 12, 503–513 (2015). (10.1038/nmeth.3400) / Nat. Methods by P de Boer (2015)
  6. Dulkeith, E. et al. Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys. Rev. Lett. 89, 203002 (2002). (10.1103/PhysRevLett.89.203002) / Phys. Rev. Lett. by E Dulkeith (2002)
  7. Kandela, I. K., Bleher, R. & Albrecht, R. M. Multiple correlative immunolabeling for light and electron microscopy using fluorophores and colloidal metal particles. J. Histochem. Cytochem. 55, 983–990 (2007). (10.1369/jhc.6A7124.2007) / J. Histochem. Cytochem. by IK Kandela (2007)
  8. Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006). (10.1103/PhysRevLett.96.113002) / Phys. Rev. Lett. by P Anger (2006)
  9. Jennings, T., Singh, M. & Strouse, G. Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: probing nset vali dity. J. Am. Chem. Soc. 128, 5462–5467 (2006). (10.1021/ja0583665) / dity. J. Am. Chem. Soc. by T Jennings (2006)
  10. Kandela, I. K. & Albrecht, R. M. Fluorescence quenching by colloidal heavy metals nanoparticles: implications for correlative fluorescence and electron microscopy studies. Scanning 29, 152–161 (2007). (10.1002/sca.20055) / Scanning by IK Kandela (2007)
  11. Hong, X. et al. Background-free detection of single 5 nm nanoparticles through interferometric cross-polarization microscopy. Nano Lett. 11, 541–547 (2011). (10.1021/nl1034489) / Nano Lett. by X Hong (2011)
  12. Miles, B. T., Greenwood, A. B., Patton, B. R. & Gersen, H. All-optical method for characterizing individual fluorescent nanodiamonds. ACS Photonics 3, 343–348 (2016). (10.1021/acsphotonics.5b00732) / ACS Photonics by BT Miles (2016)
  13. Miles, B. T. et al. Sensitivity of interferometric cross-polarization microscopy for nanoparticle detection in the near-infrared. ACS Photonics 2, 1705–1711 (2015). (10.1021/acsphotonics.5b00326) / ACS Photonics by BT Miles (2015)
  14. Hobbs, P. C. & Kino, G. S. Generalizing the confocal microscope via heterodyne interferometry and digital filtering. J. Microsc. 160, 245–264 (1990). (10.1111/j.1365-2818.1990.tb03061.x) / J. Microsc. by PC Hobbs (1990)
  15. Richards, B. & Wolf, E. Electromagnetic diffraction in optical systems. ii. structure of the image field in an aplanatic system. Proc. R. Soc. A 253, 358–379 (1959). (10.1098/rspa.1959.0200) / Proc. R. Soc. A by B Richards (1959)
  16. Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge university press, 2012). (10.1017/CBO9780511794193)
  17. Miles, B. T., Hong, X. & Gersen, H. On the complex point spread function in interferometric cross-polarisation microscopy. Opt. Express 23, 1232–1239 (2015). (10.1364/OE.23.001232) / Opt. Express by BT Miles (2015)
  18. Mutch, S. A. et al. Deconvolving single-molecule intensity distributions for quantitative microscopy measurements. Biophys. J. 92, 2926–2943 (2007). (10.1529/biophysj.106.101428) / Biophys. J. by SA Mutch (2007)
  19. Kukulski, W. et al. Correlated fluorescence and 3d electron microscopy with high sensitivity and spatial precision. J. Cell Biol. 192, 111–119 (2011). (10.1083/jcb.201009037) / J. Cell Biol. by W Kukulski (2011)
  20. Schellenberger, P. et al. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers. Ultramicroscopy 143, 41–51 (2014). (10.1016/j.ultramic.2013.10.011) / Ultramicroscopy by P Schellenberger (2014)
  21. Payne, L. et al. Optical micro-spectroscopy of single metallic nanoparticles: quantitative extinction and transient resonant four-wave mixing. Faraday discuss. 184, 305–320 (2015). (10.1039/C5FD00079C) / Faraday discuss. by L Payne (2015)
  22. Moser, F. et al. Cellular uptake of gold nanoparticles and their behavior as labels for localization microscopy. Biophys. J. 110, 947–953 (2016). (10.1016/j.bpj.2016.01.004) / Biophys. J. by F Moser (2016)
  23. Carattino, A., Keizer, V. I., Schaaf, M. J. & Orrit, M. Background suppression in imaging gold nanorods through detection of anti-stokes emission. Biophys. J. 111, 2492–2499 (2016). (10.1016/j.bpj.2016.10.035) / Biophys. J. by A Carattino (2016)
  24. Zhang, J. & Lakowicz, J. R. Metal-enhanced fluorescence of an organic fluorophore using gold particles. Opt. Express 15, 2598–2606 (2007). (10.1364/OE.15.002598) / Opt. Express by J Zhang (2007)
  25. Matveeva, E., Shtoyko, T., Gryczynski, I., Akopova, I. & Gryczynski, Z. Fluorescence quenching/enhancement surface assays: signal manipulation using silver-coated gold nanoparticles. Chem. Phys. Lett. 454, 85–90 (2008). (10.1016/j.cplett.2008.01.075) / Chem. Phys. Lett. by E Matveeva (2008)
Dates
Type When
Created 8 years, 5 months ago (March 20, 2017, 6:02 a.m.)
Deposited 2 years, 7 months ago (Dec. 23, 2022, 7:09 p.m.)
Indexed 1 year, 8 months ago (Dec. 19, 2023, 6:05 a.m.)
Issued 8 years, 5 months ago (March 20, 2017)
Published 8 years, 5 months ago (March 20, 2017)
Published Online 8 years, 5 months ago (March 20, 2017)
Funders 0

None

@article{Miles_2017, title={Direct Evidence of Lack of Colocalisation of Fluorescently Labelled Gold Labels Used in Correlative Light Electron Microscopy}, volume={7}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep44666}, DOI={10.1038/srep44666}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Miles, Benjamin T. and Greenwood, Alexander B. and Benito-Alifonso, David and Tanner, Hugh and Galan, M. Carmen and Verkade, Paul and Gersen, Henkjan}, year={2017}, month=mar }