Abstract
AbstractLarge scale Density Functional Theory (DFT) based electronic structure calculations are highly time consuming and scale poorly with system size. While semi-empirical approximations to DFT result in a reduction in computational time versus ab initio DFT, creating such approximations involves significant manual intervention and is highly inefficient for high-throughput electronic structure screening calculations. In this letter, we propose the use of machine-learning for prediction of DFT Hamiltonians. Using suitable representations of atomic neighborhoods and Kernel Ridge Regression, we show that an accurate and transferable prediction of DFT Hamiltonians for a variety of material environments can be achieved. Electronic structure properties such as ballistic transmission and band structure computed using predicted Hamiltonians compare accurately with their DFT counterparts. The method is independent of the specifics of the DFT basis or material system used and can easily be automated and scaled for predicting Hamiltonians of any material system of interest.
References
34
Referenced
70
-
Bowler, D. & Miyazaki, T. Methods in electronic structure calculations. Reports on Progress in Physics 75, 036503 (2012).
(
10.1088/0034-4885/75/3/036503
) / Reports on Progress in Physics by D Bowler (2012) -
Goringe, C., Bowler, D. et al. Tight-binding modelling of materials. Reports on Progress in Physics 60, 1447 (1997).
(
10.1088/0034-4885/60/12/001
) / Reports on Progress in Physics by C Goringe (1997) -
Klimeck, G. et al. Si tight-binding parameters from genetic algorithm fitting. Superlattices and Microstructures 27, 77–88 (2000).
(
10.1006/spmi.1999.0797
) / Superlattices and Microstructures by G Klimeck (2000) -
Hegde, G., Povolotskyi, M., Kubis, T., Boykin, T. & Klimeck, G. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. i. model and validation. Journal of Applied Physics 115 (2014).
(
10.1063/1.4868977
) -
Friedman, J., Hastie, T. & Tibshirani, R. The elements of statistical learning vol. 1 (Springer series in statistics Springer, Berlin, 2001).
(
10.1007/978-0-387-21606-5_1
) -
Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons. Physical review letters 104, 136403 (2010).
(
10.1103/PhysRevLett.104.136403
) / Physical review letters by AP Bartók (2010) -
Rupp, M., Tkatchenko, A., Müller, K.-R. & Von Lilienfeld, O. A. Fast and accurate modeling of molecular atomization energies with machine learning. Physical review letters 108, 058301 (2012).
(
10.1103/PhysRevLett.108.058301
) / Physical review letters by M Rupp (2012) -
Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Physical review letters 98, 146401 (2007).
(
10.1103/PhysRevLett.98.146401
) / Physical review letters by J Behler (2007) -
Snyder, J. C., Rupp, M., Hansen, K., Müller, K.-R. & Burke, K. Finding density functionals with machine learning. Physical review letters 108, 253002 (2012).
(
10.1103/PhysRevLett.108.253002
) / Physical review letters by JC Snyder (2012) -
Schütt, K. et al. How to represent crystal structures for machine learning: Towards fast prediction of electronic properties. Physical Review B 89, 205118 (2014).
(
10.1103/PhysRevB.89.205118
) / Physical Review B by K Schütt (2014) - Montavon, G. et al. Learning invariant representations of molecules for atomization energy prediction. In Advances in Neural Information Processing Systems, 440–448 (2012).
-
Hansen, K. et al. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space. The journal of physical chemistry letters 6, 2326–2331 (2015).
(
10.1021/acs.jpclett.5b00831
) / The journal of physical chemistry letters by K Hansen (2015) -
von Lilienfeld, O. A., Ramakrishnan, R., Rupp, M. & Knoll, A. Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties. International Journal of Quantum Chemistry 115, 1084–1093 (2015).
(
10.1002/qua.24912
) / International Journal of Quantum Chemistry by OA von Lilienfeld (2015) -
Bartók, A. P., Kondor, R. & Csányi, G. On representing chemical environments. Physical Review B 87, 184115 (2013).
(
10.1103/PhysRevB.87.184115
) / Physical Review B by AP Bartók (2013) -
Thompson, A. P., Swiler, L. P., Trott, C. R., Foiles, S. M. & Tucker, G. J. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. Journal of Computational Physics 285, 316–330 (2015).
(
10.1016/j.jcp.2014.12.018
) / Journal of Computational Physics by AP Thompson (2015) -
Bartók, A. P. & Csányi, G. Gaussian approximation potentials: A brief tutorial introduction. International Journal of Quantum Chemistry 115, 1051–1057 (2015).
(
10.1002/qua.24927
) / International Journal of Quantum Chemistry by AP Bartók (2015) -
Podolskiy, A. & Vogl, P. Compact expression for the angular dependence of tight-binding hamiltonian matrix elements. Physical Review B 69, 233101 (2004).
(
10.1103/PhysRevB.69.233101
) / Physical Review B by A Podolskiy (2004) -
Rupp, M. Machine learning for quantum mechanics in a nutshell. International Journal of Quantum Chemistry 115, 1058–1073 (2015).
(
10.1002/qua.24954
) / International Journal of Quantum Chemistry by M Rupp (2015) -
Rasmussen, C. E. Gaussian processes for machine learning (2006).
(
10.7551/mitpress/3206.001.0001
) -
Smola, A. J. & Schölkopf, B. A tutorial on support vector regression. Statistics and computing 14, 199–222 (2004).
(
10.1023/B:STCO.0000035301.49549.88
) / Statistics and computing by AJ Smola (2004) - Abu-Mostafa, Y. S., Magdon-Ismail, M. & Lin, H.-T. Learning from data vol. 4 (AMLBook: Singapore, 2012).
-
Hegde, G. & Bowen, R. C. On the feasibility of ab initio electronic structure calculations for cu using a single s orbital basis. AIP Advances 5, 107142 (2015).
(
10.1063/1.4935092
) / AIP Advances by G Hegde (2015) - Manual, A. T. Atk version 2015.1. QuantumWise A/S (www.quantumwise.com).
-
Hegde, G., Bowen, R. & Rodder, M. S. Lower limits of line resistance in nanocrystalline back end of line cu interconnects. Applied Physics Letters 109 (2016).
(
10.1063/1.4967196
) -
Hegde, G., Bowen, R. C. & Rodder, M. S. Is electron transport in nanocrystalline cu interconnects surface dominated or grain boundary dominated? In Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC), 2016 IEEE International 114–116 (IEEE, 2016).
(
10.1109/IITC-AMC.2016.7507701
) -
Tan, Y. P., Povolotskyi, M., Kubis, T., Boykin, T. B. & Klimeck, G. Tight-binding analysis of si and gaas ultrathin bodies with subatomic wave-function resolution. Physical Review B 92, 085301 (2015).
(
10.1103/PhysRevB.92.085301
) / Physical Review B by YP Tan (2015) -
Tan, Y., Povolotskyi, M., Kubis, T., Boykin, T. B. & Klimeck, G. Transferable tight-binding model for strained group iv and iii-v materials and heterostructures. Physical Review B 94, 045311 (2016).
(
10.1103/PhysRevB.94.045311
) / Physical Review B by Y Tan (2016) -
Urban, A., Reese, M., Mrovec, M., Elsässer, C. & Meyer, B. Parameterization of tight-binding models from density functional theory calculations. Physical Review B 84, 155119 (2011).
(
10.1103/PhysRevB.84.155119
) / Physical Review B by A Urban (2011) -
Elstner, M. et al. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Physical Review B 58, 7260 (1998).
(
10.1103/PhysRevB.58.7260
) / Physical Review B by M Elstner (1998) -
Wang, C.-Z. et al. Tight-binding hamiltonian from first-principles calculations. In Scientific Modeling and Simulations, 81–95 (Springer, 2008).
(
10.1007/978-1-4020-9741-6_8
) -
Qian, X. et al. Quasiatomic orbitals for ab initio tight-binding analysis. Physical Review B 78, 245112 (2008).
(
10.1103/PhysRevB.78.245112
) / Physical Review B by X Qian (2008) -
Wang, C. et al. Environment-dependent tight-binding potential model. In MRS Proceedings, vol. 491, 211 (Cambridge Univ Press, 1997).
(
10.1557/PROC-491-211
) / MRS Proceedings by C Wang (1997) -
Pettifor, D. New many-body potential for the bond order. Physical review letters 63, 2480 (1989).
(
10.1103/PhysRevLett.63.2480
) / Physical review letters by D Pettifor (1989) -
Lopez-Bezanilla, A. & von Lilienfeld, O. A. Modeling electronic quantum transport with machine learning. Phys. Rev. B 89, 235411 (2014).
(
10.1103/PhysRevB.89.235411
) / Phys. Rev. B by A Lopez-Bezanilla (2014)
Dates
Type | When |
---|---|
Created | 8 years, 6 months ago (Feb. 15, 2017, 5:33 a.m.) |
Deposited | 2 years, 8 months ago (Dec. 23, 2022, 3:10 p.m.) |
Indexed | 3 weeks, 5 days ago (Aug. 3, 2025, 12:08 a.m.) |
Issued | 8 years, 6 months ago (Feb. 15, 2017) |
Published | 8 years, 6 months ago (Feb. 15, 2017) |
Published Online | 8 years, 6 months ago (Feb. 15, 2017) |
@article{Hegde_2017, title={Machine-learned approximations to Density Functional Theory Hamiltonians}, volume={7}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep42669}, DOI={10.1038/srep42669}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Hegde, Ganesh and Bowen, R. Chris}, year={2017}, month=feb }