Abstract
AbstractWe have experimentally investigated the impact of dimensions and temperature on the thermal conductivity of silicon nanowires fabricated using a top-down approach. Both the width and temperature dependences of thermal conductivity agree with those in the existing literature. The length dependence of thermal conductivity exhibits a transition from semi-ballistic thermal phonon transport at 4 K to fully diffusive transport at room temperature. We additionally calculated the phonon dispersion in these structures in the framework of the theory of elasticity and showed that the thermal conductance increases with width. This agrees with our experimental observations and supports the pertinence of using the modified phonon dispersion at low temperatures.
References
46
Referenced
57
-
Hasan, M., Huq, M. F. & Mahmood, Z. H. A review on electronic and optical properties of silicon nanowire and its different growth techniques. Springerplus 2, 151 (2013).
(
10.1186/2193-1801-2-151
) / Springerplus by M Hasan (2013) -
Bandaru, P. R. & Pichanusakorn, P. An outline of the synthesis and properties of silicon nanowires. Semicond. Sci. Technol. 25, 24003 (2010).
(
10.1088/0268-1242/25/2/024003
) / Semicond. Sci. Technol. by PR Bandaru (2010) -
Brönstrup, G., Jahr, N., Leiterer, C., Csa, A., Fritzsche, W. & Christiansen, S. Optical Properties of Individual Silicon Nanowires for Photonic Devices. ACS Nano 4, 7113–7122 (2010).
(
10.1021/nn101076t
) / ACS Nano by G Brönstrup (2010) -
Peng, K.-Q., Wang, X., Li, L., Hu, Y. & Lee, S.-T. Silicon nanowires for advanced energy conversion and storage. Nano Today 8, 75–97 (2013).
(
10.1016/j.nantod.2012.12.009
) / Nano Today by K-Q Peng (2013) -
Zou, J. & Balandin, A. Phonon heat conduction in a semiconductor nanowire. J. Appl. Phys. 89, 2932 (2001).
(
10.1063/1.1345515
) / J. Appl. Phys. by J Zou (2001) -
Mingo, N. Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations. Phys. Rev. B 68, 113308 (2003).
(
10.1103/PhysRevB.68.113308
) / Phys. Rev. B by N Mingo (2003) -
Feser, J. P. et al. Thermal conductivity of silicon nanowire arrays with controlled roughness. J. Appl. Phys. 112, 114306 (2012).
(
10.1063/1.4767456
) / J. Appl. Phys. by JP Feser (2012) -
Dávila, D. et al. Monolithically integrated thermoelectric energy harvester based on silicon nanowire arrays for powering micro/nanodevices. Nano Energy 1, 812–819 (2012).
(
10.1016/j.nanoen.2012.06.006
) / Nano Energy by D Dávila (2012) -
Boukai, A. I. et al. Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008).
(
10.1038/nature06458
) / Nature by AI Boukai (2008) -
Stranz, A., Waag, A. & Peiner, E. High-temperature performance of stacked silicon nanowires for thermoelectric power generation. J. Electron. Mater. 42, 2233–2238 (2013).
(
10.1007/s11664-013-2590-3
) / J. Electron. Mater. by A Stranz (2013) -
Chen, J., Zhang, G. & Li, B. Phonon coherent resonance and its effect on thermal transport in core-shell nanowires. J. Chem. Phys. 135, 104508 (2011).
(
10.1063/1.3637044
) / J. Chem. Phys. by J Chen (2011) -
Xie, G. et al. Ultralow thermal conductivity in Si/GexSi1-x core-shell nanowires. J. Appl. Phys. 113, 83501 (2013).
(
10.1063/1.4792727
) / J. Appl. Phys. by G Xie (2013) -
Nika, D. L., Cocemasov, A. I., Crismari, D. V. & Balandin, A. A. Thermal conductivity inhibition in phonon engineered core-shell cross-section modulated Si/Ge nanowires. Appl. Phys. Lett. 102, 213109 (2013).
(
10.1063/1.4807389
) / Appl. Phys. Lett. by DL Nika (2013) -
Li, D., Wu, Y., Fan, R., Yang, P. & Majumdar, A. Thermal conductivity of Si/SiGe superlattice nanowires. Appl. Phys. Lett. 83, 3186 (2003).
(
10.1063/1.1619221
) / Appl. Phys. Lett. by D Li (2003) -
Dames, C. & Chen, G. Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires. J. Appl. Phys. 95, 682–693 (2004).
(
10.1063/1.1631734
) / J. Appl. Phys. by C Dames (2004) -
Hu, M. & Poulikakos, D. Si/Ge superlattice nanowires with ultralow thermal conductivity. Nano Lett. 12, 5487–5494 (2012).
(
10.1021/nl301971k
) / Nano Lett. by M Hu (2012) -
Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008).
(
10.1038/nature06381
) / Nature by AI Hochbaum (2008) -
Lim, J., Hippalgaonkar, K., Andrews, S. C. & Majumdar, A. Quantifying Surface Roughness E ff ects on Phonon Transport in Silicon Nanowires. Nano Lett. 12, 2475–2482 (2012).
(
10.1021/nl3005868
) / Nano Lett. by J Lim (2012) -
Ghossoub, M. G. et al. Spectral phonon scattering from sub-10 nm surface roughness wavelengths in metal-assisted chemically etched Si nanowires. Nano Lett. 13, 1564–1571 (2013).
(
10.1021/nl3047392
) / Nano Lett. by MG Ghossoub (2013) -
Siemens, M. E. et al. Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nat. Mater. 9, 26–30 (2010).
(
10.1038/nmat2568
) / Nat. Mater. by ME Siemens (2010) -
Hu, Y., Zeng, L., Minnich, A. J., Dresselhaus, M. S. & Chen, G. Spectral mapping of thermal conductivity through nanoscale ballistic transport. Nat. Nanotechnol. 10, 701–706 (2015).
(
10.1038/nnano.2015.109
) / Nat. Nanotechnol by Y Hu (2015) -
Johnson, J. A. et al. Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane. Phys. Rev. Lett. 110, 25901 (2013).
(
10.1103/PhysRevLett.110.025901
) / Phys. Rev. Lett. by JA Johnson (2013) -
Hsiao, T.-K. et al. Observation of room-temperature ballistic thermal conduction persisting over 8.3 μm in SiGe nanowires. Nat. Nanotechnol. 8, 534–538 (2013).
(
10.1038/nnano.2013.121
) / Nat. Nanotechnol by T-K Hsiao (2013) -
Hsiao, T.-K. et al. Micron-scale ballistic thermal conduction and suppressed thermal conductivity in heterogeneously interfaced nanowires. Phys. Rev. B 91, 35406 (2015).
(
10.1103/PhysRevB.91.035406
) / Phys. Rev. B by T-K Hsiao (2015) -
Malhotra, A. & Maldovan, M. Impact of Phonon Surface Scattering on Thermal Energy Distribution of Si and SiGe Nanowires. Sci. Rep. 6, 25818 (2016).
(
10.1038/srep25818
) / Sci. Rep by A Malhotra (2016) -
Maldovan, M. Phonon wave interference and thermal bandgap materials. Nat. Mater. 14, 667–674 (2015).
(
10.1038/nmat4308
) / Nat. Mater. by M Maldovan (2015) -
Anufriev, R., Maire, J. & Nomura, M. Reduction of thermal conductivity by surface scattering of phonons in periodic silicon nanostructures. Phys. Rev. B 93, 45411 (2016).
(
10.1103/PhysRevB.93.045411
) / Phys. Rev. B by R Anufriev (2016) - Maire, J. Thermal phonon transport in silicon nanostructures (Ecole Centrale Lyon, 2015).
-
Nomura, M. et al. Impeded thermal transport in Si multiscale hierarchical architectures with phononic crystal nanostructures. Phys. Rev. B 91, 205422 (2015).
(
10.1103/PhysRevB.91.205422
) / Phys. Rev. B by M Nomura (2015) -
Hippalgaonkar, K. et al. Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport. Nano Lett. 10, 4341–4348 (2010).
(
10.1021/nl101671r
) / Nano Lett. by K Hippalgaonkar (2010) -
Heron, J. S., Fournier, T., Mingo, N. & Bourgeois, O. Mesoscopic size effects on the thermal conductance of silicon nanowire. Nano Lett. 10, 2288 (2010).
(
10.1021/nl101622x
) / Nano Lett. by JS Heron (2010) -
Li, D. et al. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2936 (2003).
(
10.1063/1.1616981
) / Appl. Phys. Lett. by D Li (2003) -
Nomura, M. et al. Thermal phonon transport in silicon nanowires and two-dimensional phononic crystal nanostructures. Appl. Phys. Lett. 106, 143102 (2015).
(
10.1063/1.4917036
) / Appl. Phys. Lett. by M Nomura (2015) -
Maire, J. & Nomura, M. Reduced thermal conductivities of Si one-dimensional periodic structure and nanowire. Jpn. J. Appl. Phys. 53, 06JE09 (2014).
(
10.7567/JJAP.53.06JE09
) / Jpn. J. Appl. Phys. by J Maire (2014) -
Marconnet, A. M., Kodama, T., Asheghi, M. & Goodson, K. E. Phonon Conduction in Periodically Porous Silicon Nanobridges. Nanoscale Microscale Thermophys. Eng. 16, 199–219 (2012).
(
10.1080/15567265.2012.732195
) / Nanoscale Microscale Thermophys. Eng. by AM Marconnet (2012) -
Bourgeois, O., Fournier, T. & Chaussy, J. Measurement of the thermal conductance of silicon nanowires at low temperature. J. Appl. Phys. 101, 16104 (2007).
(
10.1063/1.2400093
) / J. Appl. Phys. by O Bourgeois (2007) -
Heron, J. S., Bera, C., Fournier, T., Mingo, N. & Bourgeois, O. Blocking phonons via nanoscale geometrical design. Phys. Rev. B 82, 155458 (2010).
(
10.1103/PhysRevB.82.155458
) / Phys. Rev. B by JS Heron (2010) -
Esfarjani, K., Chen, G. & Stokes, H. T. Heat transport in silicon from first-principles calculations. Phys. Rev. B 84, 85204 (2011).
(
10.1103/PhysRevB.84.085204
) / Phys. Rev. B by K Esfarjani (2011) -
Soffer, S. B. Statistical model for the size effect in electrical conduction. J. Appl. Phys. 38, 1710 (1967).
(
10.1063/1.1709746
) / J. Appl. Phys. by SB Soffer (1967) -
Huang, B. W., Hsiao, T. K., Lin, K. H., Chiou, D. W. & Chang, C. W. Length-dependent thermal transport and ballistic thermal conduction. AIP Adv. 5, 53202 (2015).
(
10.1063/1.4914584
) / AIP Adv by BW Huang (2015) -
Kwon, S., Wingert, M., Zheng, J., Xiang, J. & Chen, R. Thermal transport in Si and Ge nanostructures in the ‘confinement’ regime. Nanoscale 8, 13155–13167 (2016).
(
10.1039/C6NR03634A
) / Nanoscale by S Kwon (2016) -
Prasher, R., Tong, T. & Majumdar, A. Approximate analytical models for phonon specific heat and ballistic thermal conductance of nanowires. Nano Lett. 8, 99–103 (2008).
(
10.1021/nl0721665
) / Nano Lett. by R Prasher (2008) -
Regner, K. T. et al. Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nat. Commun. 4, 1640 (2013).
(
10.1038/ncomms2630
) / Nat. Commun. by KT Regner (2013) -
Anufriev, R. & Nomura, M. Thermal conductance boost in phononic crystal nanostructures. Phys. Rev. B 91, 245417 (2015).
(
10.1103/PhysRevB.91.245417
) / Phys. Rev. B by R Anufriev (2015) -
Anufriev, R. & Nomura, M. Reduction of thermal conductance by coherent phonon scattering in two-dimensional phononic crystals of different lattice types. Phys. Rev. B 93, 45410 (2016).
(
10.1103/PhysRevB.93.045410
) / Phys. Rev. B by R Anufriev (2016) -
Henriksen, E., Schwab, K., Worlock, J. & Roukes, M. Measurement of the quantum of thermal conductance. Nature 404, 974–977 (2000).
(
10.1038/35010065
) / Nature by E Henriksen (2000)
Dates
Type | When |
---|---|
Created | 8 years, 6 months ago (Feb. 2, 2017, 6:07 a.m.) |
Deposited | 2 years, 8 months ago (Dec. 23, 2022, 3:49 p.m.) |
Indexed | 4 weeks ago (Aug. 2, 2025, 12:58 a.m.) |
Issued | 8 years, 6 months ago (Feb. 2, 2017) |
Published | 8 years, 6 months ago (Feb. 2, 2017) |
Published Online | 8 years, 6 months ago (Feb. 2, 2017) |
@article{Maire_2017, title={Ballistic thermal transport in silicon nanowires}, volume={7}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep41794}, DOI={10.1038/srep41794}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Maire, Jeremie and Anufriev, Roman and Nomura, Masahiro}, year={2017}, month=feb }