Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractThermal conductivity is important for almost all applications involving heat transfer. The theory and modeling of crystalline materials is in some sense a solved problem, where one can now calculate their thermal conductivity from first principles using expressions based on the phonon gas model (PGM). However, modeling of amorphous materials still has many open questions, because the PGM itself becomes questionable when one cannot rigorously define the phonon velocities. In this report, we used our recently developed Green-Kubo modal analysis (GKMA) method to study amorphous silicon dioxide (a-SiO2). The predicted thermal conductivities exhibit excellent agreement with experiments and anharmonic effects are included in the thermal conductivity calculation for all the modes in a-SiO2 for the first time. Previously, localized modes (locons) have been thought to have a negligible contribution to thermal conductivity, due to their highly localized nature. However, in a-SiO2 our results indicate that locons contribute more than 10% to the total thermal conductivity from 400 K to 800 K and they are largely responsible for the increase in thermal conductivity of a-SiO2 above room temperature. This is an effect that cannot be explained by previous methods and therefore offers new insight into the nature of phonon transport in amorphous/glassy materials.

Bibliography

Lv, W., & Henry, A. (2016). Non-negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon Dioxide. Scientific Reports, 6(1).

Authors 2
  1. Wei Lv (first)
  2. Asegun Henry (additional)
References 41 Referenced 72
  1. McGaughey, A. & Larkin, J. M. Predicting phonon properties from equilibrium molecular dynamics simulations. Annu. Rev. Heat Transf. 17, 49–87 (2014). (10.1615/AnnualRevHeatTransfer.2013006915) / Annu. Rev. Heat Transf by A McGaughey (2014)
  2. Henry, A. S. & Chen, G. Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics. Journal of Computational and Theoretical Nanoscience 5, 141–152 (2008). (10.1166/jctn.2008.2454) / Journal of Computational and Theoretical Nanoscience by AS Henry (2008)
  3. Broido, D. A., Malorny, M., Birner, G., Mingo, N. & Stewart, D. A. Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett. 91, 231922 (2007). (10.1063/1.2822891) / Appl. Phys. Lett. by DA Broido (2007)
  4. Garg, J., Bonini, N., Kozinsky, B. & Marzari, N. Role of Disorder and Anharmonicity in the Thermal Conductivity of Silicon-Germanium Alloys: A First-Principles Study. Phys. Rev. Lett. 106, 45901 (2011). (10.1103/PhysRevLett.106.045901) / Phys. Rev. Lett. by J Garg (2011)
  5. Koh, Y. & Cahill, D. Frequency dependence of the thermal conductivity of semiconductor alloys. Phys. Rev. B 76, 075207 (2007). (10.1103/PhysRevB.76.075207) / Phys. Rev. B by Y Koh (2007)
  6. Minnich, A. J. et al. Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths. Phys. Rev. Lett. 107, 095901 (2011). (10.1103/PhysRevLett.107.095901) / Phys. Rev. Lett. by AJ Minnich (2011)
  7. Regner, K. T. et al. Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nat. Commun. 4, 1640 (2013). (10.1038/ncomms2630) / Nat. Commun. by KT Regner (2013)
  8. Hu, Y., Zeng, L., Minnich, A. J., Dresselhaus, M. S. & Chen, G. Spectral mapping of thermal conductivity through nanoscale ballistic transport. Nat. Nanotechnol. 10, 701–706 (2015). (10.1038/nnano.2015.109) / Nat. Nanotechnol by Y Hu (2015)
  9. Zeng, L. et al. Measuring Phonon Mean Free Path Distributions by Probing Quasiballistic Phonon Transport in Grating Nanostructures. Sci. Rep. 5, 17131 (2015). (10.1038/srep17131) / Sci. Rep by L Zeng (2015)
  10. Peierls, R. R. On the kinetic theory of thermal conduction in crystals. Ann. Phys. 3, 1055 (1929). (10.1002/andp.19293950803) / Ann. Phys by RR Peierls (1929)
  11. Omini, M. & Sparavigna, A. Beyond the isotropic-model approximation in the theory of thermal conductivity. Phys. Rev. B 53, 9064–9073 (1996). (10.1103/PhysRevB.53.9064) / Phys. Rev. B by M Omini (1996)
  12. Lindsay, L., Broido, D. & Mingo, N. Lattice thermal conductivity of single-walled carbon nanotubes: Beyond the relaxation time approximation and phonon-phonon scattering selection rules. Phys. Rev. B 80, 125407 (2009). (10.1103/PhysRevB.80.125407) / Phys. Rev. B by L Lindsay (2009)
  13. Lindsay, L., Broido, D. A. & Reinecke, T. L. First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond? Phys. Rev. Lett. 111, 25901 (2013). (10.1103/PhysRevLett.111.025901) / Phys. Rev. Lett. by L Lindsay (2013)
  14. Li, D. et al. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934 (2003). (10.1063/1.1616981) / Appl. Phys. Lett. by D Li (2003)
  15. Li, W. et al. Thermal conductivity of diamond nanowires from first principles. Phys. Rev. B 85, 195436 (2012). (10.1103/PhysRevB.85.195436) / Phys. Rev. B by W Li (2012)
  16. He, Y. & Galli, G. Microscopic Origin of the Reduced Thermal Conductivity of Silicon Nanowires. Phys. Rev. Lett. 108, 215901 (2012). (10.1103/PhysRevLett.108.215901) / Phys. Rev. Lett. by Y He (2012)
  17. Peierls, R. Quantum Theory of Solids. (Clarendon, Oxford, 1955).
  18. Ziman, J. M. Electrons and phonons. (Oxford University Press, Oxford, 1960).
  19. Larkin, J. M., Turney, J. E., Massicotte, A. D., Amon, C. H. & McGaughey, A. J. H. Comparison and Evaluation of Spectral Energy Methods for Predicting Phonon Properties. J. Comput. Theor. Nanosci. 11, 249–256 (2014). (10.1166/jctn.2014.3345) / J. Comput. Theor. Nanosci. by JM Larkin (2014)
  20. McGaughey, A. J. H. & Kaviany, M. Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model under the single-mode relaxation time approximation. Phys. Rev. B 69, 94303 (2004). (10.1103/PhysRevB.69.094303) / Phys. Rev. B by AJH McGaughey (2004)
  21. Larkin, J. M. & McGaughey, A. J. H. Thermal conductivity accumulation in amorphous silica and amorphous silicon. Phys. Rev. B 89, 144303 (2014). (10.1103/PhysRevB.89.144303) / Phys. Rev. B by JM Larkin (2014)
  22. Esfarjani, K., Chen, G. & Stokes, H. T. Heat transport in silicon from first-principles calculations. Phys. Rev. B 84, 85204 (2011). (10.1103/PhysRevB.84.085204) / Phys. Rev. B by K Esfarjani (2011)
  23. Lv, W. & Henry, A. Direct calculation of modal contributions to thermal conductivity via Green–Kubo modal analysis. New J. Phys. 18, 013028 (2016). (10.1088/1367-2630/18/1/013028) / New J. Phys. by W Lv (2016)
  24. He, Y., Donadio, D. & Galli, G. Heat transport in amorphous silicon: Interplay between morphology and disorder. Appl. Phys. Lett. 98, 144101 (2011). (10.1063/1.3574366) / Appl. Phys. Lett. by Y He (2011)
  25. Allen, P. B., Feldman, J. L., Fabian, J. & Wooten, F. Diffusons, locons and propagons: Character of atomic vibrations in amorphous Si. Philos. Mag. B 79, 1715–1731 (1999). (10.1080/13642819908223054) / Philos. Mag. B by PB Allen (1999)
  26. Feldman, J. L., Kluge, M. D., Allen, P. B. & Wooten, F. Thermal conductivity and localization in glasses: Numerical study of a model of amorphous silicon. Phys. Rev. B 48, 12589 (1993). (10.1103/PhysRevB.48.12589) / Phys. Rev. B by JL Feldman (1993)
  27. Shenogin, S., Bodapati, A., Keblinski, P. & McGaughey, A. J. H. Predicting the thermal conductivity of inorganic and polymeric glasses: The role of anharmonicity. J. Appl. Phys. 105, 34906 (2009). (10.1063/1.3073954) / J. Appl. Phys. by S Shenogin (2009)
  28. Henry, A. & Chen, G. High Thermal Conductivity of Single Polyethylene Chains Using Molecular Dynamics Simulations. Phys. Rev. Lett. 101, 235502 (2008). (10.1103/PhysRevLett.101.235502) / Phys. Rev. Lett. by A Henry (2008)
  29. van Duin, A. C. T., Dasgupta, S., Lorant, F. & Goddard, W. A. ReaxFF: A Reactive Force Field for Hydrocarbons. J. Phys. Chem. A 105, 9396–9409 (2001). (10.1021/jp004368u) / J. Phys. Chem. A by ACT van Duin (2001)
  30. Cahill, D. & Pohl, R. Thermal conductivity of amorphous solids above the plateau. Phys. Rev. B 35, 4067–4073 (1987). (10.1103/PhysRevB.35.4067) / Phys. Rev. B by D Cahill (1987)
  31. Turney, J., McGaughey, A. & Amon, C. Assessing the applicability of quantum corrections to classical thermal conductivity predictions. Phys. Rev. B 79, 224305 (2009). (10.1103/PhysRevB.79.224305) / Phys. Rev. B by J Turney (2009)
  32. Allen, P. B. & Feldman, J. L. Thermal conductivity of disordered harmonic solids. Phys. Rev. B 48, 12581–12588 (1993). (10.1103/PhysRevB.48.12581) / Phys. Rev. B by PB Allen (1993)
  33. Allen, P. B., Feldman, J. L., Fabian, J. & Wooten, F. Diffusons, locons and propagons: Character of atomie yibrations in amorphous Si. Philos. Mag. Part B 79, 1715–1731 (1999). (10.1080/13642819908223054) / Philos. Mag. Part B by PB Allen (1999)
  34. Alexander, S., Entin-Wohlman, O. & Orbach, R. Phonon-fracton anharmonic interactions: The thermal conductivity of amorphous materials. Phys. Rev. B 34, 2726–2734 (1986). (10.1103/PhysRevB.34.2726) / Phys. Rev. B by S Alexander (1986)
  35. Jagannathan, A., Orbach, R. & Entin-Wohlman, O. Thermal conductivity of amorphous materials above the plateau. Phys. Rev. B 39, 13465–13477 (1989). (10.1103/PhysRevB.39.13465) / Phys. Rev. B by A Jagannathan (1989)
  36. Gordiz, K. & Henry, A. Phonon Transport at Crystalline Si/Ge Interfaces: The Role of Interfacial Modes of Vibration. Sci. Rep. 6, 23139 (2016). (10.1038/srep23139) / Sci. Rep by K Gordiz (2016)
  37. Taraskin, S. N. & Elliott, S. R. Nature of vibrational excitations in vitreous silica. Phys. Rev. B 56, 8605–8622 (1997). (10.1103/PhysRevB.56.8605) / Phys. Rev. B by SN Taraskin (1997)
  38. van Beest, B. W., Kramer, G. & van Santen, R. A. Force fields for silicas and aluminophosphates based on ab initio calculations. Phys. Rev. Lett. 64, 1955–1958 (1990). (10.1103/PhysRevLett.64.1955) / Phys. Rev. Lett. by BW van Beest (1990)
  39. Kramer, G. J., Farragher, N. P., van Beest, B. W. H. & van Santen, R. A. Interatomic force fields for silicas, aluminophosphates, and zeolites: Derivation based on ab initio calculations. Phys. Rev. B 43, 5068–5080 (1991). (10.1103/PhysRevB.43.5068) / Phys. Rev. B by GJ Kramer (1991)
  40. Yu, X. & Leitner, D. M. Thermal conductivity computed for vitreous silica and methyl-doped silica above the plateau. Phys. Rev. B 74, 184305 (2006). (10.1103/PhysRevB.74.184305) / Phys. Rev. B by X Yu (2006)
  41. Jund, P. & Jullien, R. Molecular-dynamics calculation of the thermal conductivity of vitreous silica. Phys. Rev. B 59, 13707–13711 (1999). (10.1103/PhysRevB.59.13707) / Phys. Rev. B by P Jund (1999)
Dates
Type When
Created 8 years, 10 months ago (Oct. 21, 2016, 5:33 a.m.)
Deposited 2 years, 7 months ago (Jan. 4, 2023, 8:56 p.m.)
Indexed 2 weeks, 1 day ago (Aug. 6, 2025, 9:21 a.m.)
Issued 8 years, 10 months ago (Oct. 21, 2016)
Published 8 years, 10 months ago (Oct. 21, 2016)
Published Online 8 years, 10 months ago (Oct. 21, 2016)
Funders 0

None

@article{Lv_2016, title={Non-negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon Dioxide}, volume={6}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep35720}, DOI={10.1038/srep35720}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Lv, Wei and Henry, Asegun}, year={2016}, month=oct }