Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractHeterogeneous catalysis, which is widely used in the chemical industry, makes a great use of supported late-transition-metal nanoparticles, and bimetallic catalysts often show superior catalytic performances as compared to their single metal counterparts. In order to optimize catalyst efficiency and discover new active combinations, an atomic-level understanding and control of the catalyst structure is desirable. In this work, the structure of catalytically active AuRh bimetallic nanoparticles prepared by colloidal methods and immobilized on rutile titania nanorods was investigated using aberration-corrected scanning transmission electron microscopy. Depending on the applied post-treatment, different types of segregation behaviours were evidenced, ranging from Rh core – Au shell to Janus via Rh ball – Au cup configuration. The stability of these structures was predicted by performing density-functional-theory calculations on unsupported and titania-supported Au-Rh clusters; it can be rationalized from the lower surface and cohesion energies of Au with respect to Rh, and the preferential binding of Rh with the titania support. The bulk-immiscible AuRh/TiO2 system can serve as a model to understand similar supported nanoalloy systems and their synergistic behaviour in catalysis.

Bibliography

Piccolo, L., Li, Z. Y., Demiroglu, I., Moyon, F., Konuspayeva, Z., Berhault, G., Afanasiev, P., Lefebvre, W., Yuan, J., & Johnston, R. L. (2016). Understanding and controlling the structure and segregation behaviour of AuRh nanocatalysts. Scientific Reports, 6(1).

Authors 10
  1. Laurent Piccolo (first)
  2. Z. Y. Li (additional)
  3. Ilker Demiroglu (additional)
  4. Florian Moyon (additional)
  5. Zere Konuspayeva (additional)
  6. Gilles Berhault (additional)
  7. Pavel Afanasiev (additional)
  8. Williams Lefebvre (additional)
  9. Jun Yuan (additional)
  10. Roy L. Johnston (additional)
References 38 Referenced 57
  1. Sinfelt, J. H. Catalysis by alloys and bimetallic clusters. Acc. Chem. Res. 10, 15–20 (1977). (10.1021/ar50109a003) / Acc. Chem. Res. by JH Sinfelt (1977)
  2. Piccolo, L. In Nanoalloys: Synthesis, Structure and Properties (eds. Alloyeau, D., Mottet, C. & Ricolleau, C. ) 369–404 (Springer London, 2012).
  3. Morfin, F., Nassreddine, S., Rousset, J. L. & Piccolo, L. Nanoalloying Effect in the Preferential Oxidation of CO over Ir–Pd Catalysts. ACS Catal. 2, 2161–2168 (2012). (10.1021/cs3003325) / ACS Catal. by F Morfin (2012)
  4. Dai, Y., Wang, Y., Liu, B. & Yang, Y. Metallic Nanocatalysis: An Accelerating Seamless Integration with Nanotechnology. Small 11, 268–289 (2015). (10.1002/smll.201400847) / Small by Y Dai (2015)
  5. Ferrando, R., Jellinek, J. & Johnston, R. L. Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles. Chem. Rev. 108, 845–910 (2008). (10.1021/cr040090g) / Chem. Rev. by R Ferrando (2008)
  6. Falsig, H. et al. Trends in the Catalytic CO Oxidation Activity of Nanoparticles. Angew. Chem. Int. Ed. 47, 4835–4839 (2008). (10.1002/anie.200801479) / Angew. Chem. Int. Ed. by H Falsig (2008)
  7. Yudanov, I. V. & Neyman, K. M. Stabilization of Au at edges of bimetallic PdAu nanocrystallites. Phys. Chem. Chem. Phys. 12, 5094–5100 (2010). (10.1039/b927048e) / Phys. Chem. Chem. Phys. by IV Yudanov (2010)
  8. Chantry, R. L. et al. Overgrowth of Rhodium on Gold Nanorods. J. Phys. Chem. C 116, 10312–10317 (2012). (10.1021/jp212432g) / J. Phys. Chem. C by RL Chantry (2012)
  9. Chantry, R. L. et al. An atomistic view of the interfacial structures of AuRh and AuPd nanorods. Nanoscale 5, 7452–7457 (2013). (10.1039/c3nr02560h) / Nanoscale by RL Chantry (2013)
  10. Zlotea, C. et al. Nanoalloying bulk-immiscible iridium and palladium inhibits hydride formation and promotes catalytic performances. Nanoscale 6, 9955–9959 (2014). (10.1039/C4NR02836H) / Nanoscale by C Zlotea (2014)
  11. Essinger-Hileman, E. R., DeCicco, D., Bondi, J. F. & Schaak, R. E. Aqueous room-temperature synthesis of Au–Rh, Au–Pt, Pt–Rh, and Pd–Rh alloy nanoparticles: fully tunable compositions within the miscibility gaps. J. Mater. Chem. 21, 11599–11604 (2011). (10.1039/c0jm03913f) / J. Mater. Chem. by ER Essinger-Hileman (2011)
  12. Hutchings, G. J. & Kiely, C. J. Strategies for the Synthesis of Supported Gold Palladium Nanoparticles with Controlled Morphology and Composition. Acc. Chem. Res. 46, 1759–1772 (2013). (10.1021/ar300356m) / Acc. Chem. Res. by GJ Hutchings (2013)
  13. García, S., Zhang, L., Piburn, G. W., Henkelman, G. & Humphrey, S. M. Microwave Synthesis of Classically Immiscible Rhodium–Silver and Rhodium–Gold Alloy Nanoparticles: Highly Active Hydrogenation Catalysts. ACS Nano 8, 11512–11521 (2014). (10.1021/nn504746u) / ACS Nano by S García (2014)
  14. Kobayashi, H., Kusada, K. & Kitagawa, H. Creation of Novel Solid-Solution Alloy Nanoparticles on the Basis of Density-of-States Engineering by Interelement Fusion. Acc. Chem. Res. 48, 1551–1559 (2015). (10.1021/ar500413e) / Acc. Chem. Res. by H Kobayashi (2015)
  15. Konuspayeva, Z. et al. Au–Rh and Au–Pd nanocatalysts supported on rutile titania nanorods: structure and chemical stability. Phys. Chem. Chem. Phys. 17, 28112–28120 (2015). (10.1039/C5CP00249D) / Phys. Chem. Chem. Phys. by Z Konuspayeva (2015)
  16. Villa, A., Wang, D., Su, D. S. & Prati, L. New challenges in gold catalysis: bimetallic systems. Catal. Sci. Technol. 5, 55–68 (2015). (10.1039/C4CY00976B) / Catal. Sci. Technol. by A Villa (2015)
  17. Óvári, L., Berkó, A., Gubó, R., Rácz, Á. & Kónya, Z. Effect of a Gold Cover Layer on the Encapsulation of Rhodium by Titanium Oxides on Titanium Dioxide(110). J. Phys. Chem. C 118, 12340–12352 (2014). (10.1021/jp502748a) / J. Phys. Chem. C by L Óvári (2014)
  18. Chantry, R. L., Atanasov, I., Horswell, S. L., Li, Z. Y. & Johnston, R. L. In Gold Clusters, Colloids and Nanoparticles II (ed. Mingos, D. M. P. ) 67–90 (Springer International Publishing, 2014). (10.1007/430_2013_139)
  19. Nguyen, T. S., Laurenti, D., Afanasiev, P. & Konuspayeva, Z. Titania-supported gold-based nanoparticles efficiently catalyze the hydrodeoxygenation of guaiacol. J. Catal. in press 10.1016/j.jcat.2016.09.016.
  20. Wang, Z. W. et al. Quantitative Z-contrast imaging in the scanning transmission electron microscope with size-selected clusters. Phys. Rev. B 84, 73408 (2011). (10.1103/PhysRevB.84.073408) / Phys. Rev. B by ZW Wang (2011)
  21. Bals, S. et al. Three-Dimensional Atomic Imaging of Colloidal Core–Shell Nanocrystals. Nano Lett. 11, 3420–3424 (2011). (10.1021/nl201826e) / Nano Lett. by S Bals (2011)
  22. Han, Y., He, D. S. & Li, Z. Y. Direct observation of dynamic events of Au clusters on MgO(100) by HAADF-STEM. J. Nanopart. Res. 15, 1–7 (2013). / J. Nanopart. Res. by Y Han (2013)
  23. Martinez, G. T., Rosenauer, A., De Backer, A., Verbeeck, J. & Van Aert, S. Quantitative composition determination at the atomic level using model-based high-angle annular dark field scanning transmission electron microscopy. Ultramicroscopy 137, 12–19 (2014). (10.1016/j.ultramic.2013.11.001) / Ultramicroscopy by GT Martinez (2014)
  24. Baletto, F., Ferrando, R., Fortunelli, A., Montalenti, F. & Mottet, C. Crossover among structural motifs in transition and noble-metal clusters. J. Chem. Phys. 116, 3856–3863 (2002). (10.1063/1.1448484) / J. Chem. Phys. by F Baletto (2002)
  25. Li, H. et al. Magic-Number Gold Nanoclusters with Diameters from 1 to 3.5 nm: Relative Stability and Catalytic Activity for CO Oxidation. Nano Lett. 15, 682–688 (2015). (10.1021/nl504192u) / Nano Lett. by H Li (2015)
  26. Paz-Borbón, L. O., Gupta, A. & Johnston, R. L. Dependence of the structures and chemical ordering of Pd–Pt nanoalloys on potential parameters. J. Mater. Chem. 18, 4154–4164 (2008). (10.1039/b805147j) / J. Mater. Chem. by LO Paz-Borbón (2008)
  27. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993). (10.1103/PhysRevB.47.558) / Phys. Rev. B by G Kresse (1993)
  28. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868 (1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett. by JP Perdew (1996)
  29. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). (10.1103/PhysRevB.50.17953) / Phys. Rev. B by PE Blöchl (1994)
  30. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). (10.1103/PhysRevB.59.1758) / Phys. Rev. B by G Kresse (1999)
  31. Ferrando, R., Fortunelli, A. & Rossi, G. Quantum effects on the structure of pure and binary metallic nanoclusters. Phys. Rev. B 72, 85449 (2005). (10.1103/PhysRevB.72.085449) / Phys. Rev. B by R Ferrando (2005)
  32. Demiroglu, I., Li, Z. Y., Piccolo, L. & Johnston, R. L. A. DFT study of molecular adsorption on Au–Rh nanoalloys. Catal. Sci. Technol. 6, 6916–6931 (2016). (10.1039/C6CY01107A) / Catal. Sci. Technol. by I Demiroglu (2016)
  33. Han, C. W. et al. Highly Stable Bimetallic AuIr/TiO2 Catalyst: Physical Origins of the Intrinsic High Stability against Sintering. Nano Lett. 15, 8141–8147 (2015). (10.1021/acs.nanolett.5b03585) / Nano Lett. by CW Han (2015)
  34. Li, H. & Afanasiev, P. On the selective growth of titania polymorphs in acidic aqueous medium. Mater. Res. Bull. 46, 2506–2514 (2011). (10.1016/j.materresbull.2011.08.023) / Mater. Res. Bull. by H Li (2011)
  35. Toshima, N., Harada, M., Yamazaki, Y. & Asakura, K. Catalytic activity and structural analysis of polymer-protected gold-palladium bimetallic clusters prepared by the simultaneous reduction of hydrogen tetrachloroaurate and palladium dichloride. J. Phys. Chem. 96, 9927–9933 (1992). (10.1021/j100203a064) / J. Phys. Chem. by N Toshima (1992)
  36. Toshima, N. Core/shell-structured bimetallic nanocluster catalysts for visible-light-induced electron transfer. Pure Appl. Chem. 72, 317–325 (2000). (10.1351/pac200072010317) / Pure Appl. Chem. by N Toshima (2000)
  37. Dimitratos, N., Porta, F. & Prati, L. Au, Pd (mono and bimetallic) catalysts supported on graphite using the immobilisation method: Synthesis and catalytic testing for liquid phase oxidation of glycerol. Appl. Catal. A 291, 210–214 (2005). (10.1016/j.apcata.2005.01.044) / Appl. Catal. A by N Dimitratos (2005)
  38. Dimitratos, N. et al. Solvent-free oxidation of benzyl alcohol using Au–Pd catalysts prepared by sol immobilisation. Phys. Chem. Chem. Phys. 11, 5142–5153 (2009). (10.1039/b900151b) / Phys. Chem. Chem. Phys. by N Dimitratos (2009)
Dates
Type When
Created 8 years, 10 months ago (Oct. 14, 2016, 6:26 a.m.)
Deposited 2 years, 7 months ago (Jan. 4, 2023, 9:42 p.m.)
Indexed 2 weeks, 6 days ago (Aug. 2, 2025, 12:37 a.m.)
Issued 8 years, 10 months ago (Oct. 14, 2016)
Published 8 years, 10 months ago (Oct. 14, 2016)
Published Online 8 years, 10 months ago (Oct. 14, 2016)
Funders 0

None

@article{Piccolo_2016, title={Understanding and controlling the structure and segregation behaviour of AuRh nanocatalysts}, volume={6}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep35226}, DOI={10.1038/srep35226}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Piccolo, Laurent and Li, Z. Y. and Demiroglu, Ilker and Moyon, Florian and Konuspayeva, Zere and Berhault, Gilles and Afanasiev, Pavel and Lefebvre, Williams and Yuan, Jun and Johnston, Roy L.}, year={2016}, month=oct }