Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractThe electronic and structural properties of LiBO3 (B = V, Nb, Ta, Os) are investigated via first-principles methods. We show that LiBO3 belong to the recently proposed hyperferroelectrics (hyperFEs), i.e., they all have unstable longitudinal optic phonon modes. Especially, the ferroelectric-like instability in the metal LiOsO3, whose optical dielectric constant goes to infinity, is a limiting case of hyperFEs. Via an effective Hamiltonian, we further show that, in contrast to normal proper ferroelectricity, in which the ferroelectric instability usually comes from long-range coulomb interactions, the hyperFE instability is due to the structure instability driven by short-range interactions. This could happen in systems with large ion size mismatches, which therefore provides a useful guidance in searching for novel hyperFEs.

Bibliography

Li, P., Ren, X., Guo, G.-C., & He, L. (2016). The origin of hyperferroelectricity in LiBO3 (B = V, Nb, Ta, Os). Scientific Reports, 6(1).

Authors 4
  1. Pengfei Li (first)
  2. Xinguo Ren (additional)
  3. Guang-Can Guo (additional)
  4. Lixin He (additional)
References 34 Referenced 24
  1. Zhong, W., King-Smith, R. D. & Vanderbilt, D. Giant lo-to splittings in perovskite ferroelectrics. Phys. Rev. Lett. 72, 3618 (1994). (10.1103/PhysRevLett.72.3618) / Phys. Rev. Lett. by W Zhong (1994)
  2. Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506 (2003). (10.1038/nature01501) / Nature by J Junquera (2003)
  3. Sai, N., Fennie, C. J. & Demkov, A. A. Absence of critical thickness in an ultrathin improper ferroelectric film. Phys. Rev. Lett. 102, 107601 (2009). (10.1103/PhysRevLett.102.107601) / Phys. Rev. Lett. by N Sai (2009)
  4. Garrity, K. F., Rabe, K. M. & Vanderbilt, D. Hyperferroelectrics: Proper ferroelectrics with persistent polarization. Phys. Rev. Lett. 112, 127601 (2014). (10.1103/PhysRevLett.112.127601) / Phys. Rev. Lett. by KF Garrity (2014)
  5. Bennett, J. W., Garrity, K. F., Rabe, K. M. & D., Vanderbilt . Hexagonal abc semiconductors as ferroelectrics. Phys. Rev. Lett. 109, 167602 (2012). (10.1103/PhysRevLett.109.167602) / Phys. Rev. Lett. by JW Bennett (2012)
  6. Benedek, N. A. & Stengel, M. Viewpoint: Polarization that holds steady. Physics 7, 32 (2014). (10.1103/Physics.7.32) / Physics by NA Benedek (2014)
  7. Polking, M. J. et al. Ferroelectric order in individual nanometrescale crystals. Nature Materials 11, 700 (2012). (10.1038/nmat3371) / Nature Materials by MJ Polking (2012)
  8. Penna, A. F., Chaves, A. & Porto, S. P. S. Debyelike diffusive central mode near the phase transition in ferroelectric lithium tantalate. Solid State Commun. 19, 491 (1976). (10.1016/0038-1098(76)90049-1) / Solid State Commun. by AF Penna (1976)
  9. Okamoto, Y., Wang, P. C. & Scott, J. F. Analysis of quasielastic light scattering in linbo3 near tc. Phys. Rev. B 32, 6787 (1985). (10.1103/PhysRevB.32.6787) / Phys. Rev. B by Y Okamoto (1985)
  10. Zhang, M. S. & Scott, J. F. Analysis of quasielastic light scattering in litao3 near tc. Phys. Rev. B 34, 1880 (1986). (10.1103/PhysRevB.34.1880) / Phys. Rev. B by MS Zhang (1986)
  11. Catchen, G. L. & Spaar, D. M. Orderdisorder effects in the phase transitions of linbo3 and litao3 measured by perturbedangularcorrelation spectroscopy. Phys. Rev. B 44, 12137 (1991). (10.1103/PhysRevB.44.12137) / Phys. Rev. B by GL Catchen (1991)
  12. Cheng, G. et al. Inelastic neutron scattering of lithium tantalate studied in the ferroelectric and paraelectric phases. J. Phys. C 5, 2707 (1993). / J. Phys. C by G Cheng (1993)
  13. Inbar, I. & Cohen, R. E. Comparison of the electronic structures and energetics of ferroelectric linbo3 and litao3. Phys. Rev. B 53, 1193 (1996). (10.1103/PhysRevB.53.1193) / Phys. Rev. B by I Inbar (1996)
  14. Shi, Y. et al. A ferroelectric-like structural transition in a metal. Nature Materials 12, 1024 (2013). (10.1038/nmat3754) / Nature Materials by Y Shi (2013)
  15. Xiang, H. J. Origin of polar distortion in linbo3-type ferroelectric metals: Role of a-site instability and short-range interactions. Phys. Rev. B 90, 094108 (2014). (10.1103/PhysRevB.90.094108) / Phys. Rev. B by HJ Xiang (2014)
  16. Giovannetti, G. & Capone, M. Dual nature of the ferroelectric and metallic state in lioso3 . Phys. Rev. B 90, 195113 (2014). (10.1103/PhysRevB.90.195113) / Phys. Rev. B by G Giovannetti (2014)
  17. Benedek, N. A. & Birolb, T. ‘ferroelectricmetals’ reexamined: fundamental mechanisms and design considerations for new materials. J. Mater. Chem. C 4, 4000 (2016). (10.1039/C5TC03856A) / J. Mater. Chem. C by NA Benedek (2016)
  18. Liu, H. M. et al. Metallic ferroelectricity induced by anisotropic unscreened coulomb interaction in lioso3. Phys. Rev. B 91, 064104 (2015). (10.1103/PhysRevB.91.064104) / Phys. Rev. B by HM Liu (2015)
  19. Pick, R. M., Cohen, M. H. & Martin, R. M. Microscopic theory of force constants in the adiabatic approximation. Phys. Rev. B 1, 910 (1970). (10.1103/PhysRevB.1.910) / Phys. Rev. B by RM Pick (1970)
  20. Thierfelder, C., Sanna, S., Schindlmayr, A. & Schmidt, W. G. Do we know the band gap of lithium niobate? Phys. Status Solidi C 2, 362 (2010). (10.1002/pssc.200982473) / Phys. Status Solidi C by C Thierfelder (2010)
  21. Polshettiwar, V., Asefa, T. & Hutchings, G. Nanocatalysis: Synthesis and applications. Nanocatalysis: Synthesis and Applications Fig 14.13 (2013). (10.1002/9781118609811)
  22. Jr., A. S. B. & Loudon, R. Dielectric properties and optical phonons in linbo3 . Phys. Rev. 158, 433 (1967). (10.1103/PhysRev.158.433) / Phys. Rev. by ASB Jr. (1967)
  23. Zhong, W., Vanderbilt, D. & Rabe, K. M. First-principles theory of ferroelectric phase transitions for perovskites:the case of batio3. Phys. Rev. B 52, 6301 (1995). (10.1103/PhysRevB.52.6301) / Phys. Rev. B by W Zhong (1995)
  24. Marek, V. Thesis, First-principles study of ferroelectric oxides: dynamical properties and electron localization tensor (2003).
  25. Friedrich, M., Riefer, A., Sanna, S., Schmidt, W. G. & Schindlmayr, A. A. phonon dispersion and zero-point renormalization of linbo3 from density-functional perturbation theory. J. Phys Condens Matter 27, 385402 (2015). (10.1088/0953-8984/27/38/385402) / J. Phys Condens Matter by M Friedrich (2015)
  26. Hafid, L. & Michel-Calendini, F. M. Electronic structure of linbo 3: densities of states, optical anisotropy and spontaneous polarisation calculated from the xα molecular orbital method. J. Phys. C: Sold State Phys. 19, 2907 (1986). (10.1088/0022-3719/19/16/011) / J. Phys. C: Sold State Phys. by L Hafid (1986)
  27. Wemple, S. H., DiDomenico, M. & Camlibel, I. Relationship between linear and quadratic electro-optic coefficients in linbo3, litao3 and other oxygen-octahedra ferroelectrics based on direct measurement of spontaneous polarization. Appl. Phys. Lett. 12, 209 (1968). (10.1063/1.1651955) / Appl. Phys. Lett. by SH Wemple (1968)
  28. Fu, H. Physical constraint and its consequence for hyperferroelectrics. Journal of Applied Physics 116, 164104 (2014). (10.1063/1.4900480) / Journal of Applied Physics by H Fu (2014)
  29. Cohen, M. H. Dipolar sums in the primitive cubic lattices. Phys. Rev. 99, 1128 (1955). (10.1103/PhysRev.99.1128) / Phys. Rev. by MH Cohen (1955)
  30. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, R558 (1993). (10.1103/PhysRevB.47.558) / Phys. Rev. B by G Kresse (1993)
  31. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). (10.1103/PhysRevB.54.11169) / Phys. Rev. B by G Kresse (1996)
  32. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994). (10.1103/PhysRevB.50.17953) / Phys. Rev. B by PE Blochl (1994)
  33. Togo, A., Oba, F. & Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and cacl2cacl2-type sio2 at high pressures. Phys. Rev. B 78, 134106 (2008). (10.1103/PhysRevB.78.134106) / Phys. Rev. B by A Togo (2008)
  34. Gajdos, M., Hummer, K., Kresse, G., Furthmüller, J. & Bechstedt, F. Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73, 045112 (2006). (10.1103/PhysRevB.73.045112) / Phys. Rev. B by M Gajdos (2006)
Dates
Type When
Created 8 years, 10 months ago (Oct. 3, 2016, 5:33 a.m.)
Deposited 2 years, 7 months ago (Jan. 4, 2023, 5:11 p.m.)
Indexed 1 month ago (Aug. 2, 2025, 12:32 a.m.)
Issued 8 years, 10 months ago (Oct. 3, 2016)
Published 8 years, 10 months ago (Oct. 3, 2016)
Published Online 8 years, 10 months ago (Oct. 3, 2016)
Funders 0

None

@article{Li_2016, title={The origin of hyperferroelectricity in LiBO3 (B = V, Nb, Ta, Os)}, volume={6}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep34085}, DOI={10.1038/srep34085}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Li, Pengfei and Ren, Xinguo and Guo, Guang-Can and He, Lixin}, year={2016}, month=oct }