Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractType III secretion systems (T3SSs) are essential devices in the virulence of many Gram-negative bacterial pathogens. They mediate injection of protein effectors of virulence from bacteria into eukaryotic host cells to manipulate them during infection. T3SSs involved in virulence (vT3SSs) are evolutionarily related to bacterial flagellar protein export apparatuses (fT3SSs), which are essential for flagellar assembly and cell motility. The structure of the external and transmembrane parts of both fT3SS and vT3SS is increasingly well-defined. However, the arrangement of their cytoplasmic and inner membrane export apparatuses is much less clear. Here we compare the architecture of the cytoplasmic regions of the vT3SSs of Shigella flexneri and the vT3SS and fT3SS of Salmonella enterica serovar Typhimurium at ~5 and ~4 nm resolution using electron cryotomography and subtomogram averaging. We show that the cytoplasmic regions of vT3SSs display conserved six-fold symmetric features including pods, linkers and an ATPase complex, while fT3SSs probably only display six-fold symmetry in their ATPase region. We also identify other morphological differences between vT3SSs and fT3SSs, such as relative disposition of their inner membrane-attached export platform, C-ring/pods and ATPase complex. Finally, using classification, we find that both types of apparatuses can loose elements of their cytoplasmic region, which may therefore be dynamic.

Bibliography

Makino, F., Shen, D., Kajimura, N., Kawamoto, A., Pissaridou, P., Oswin, H., Pain, M., Murillo, I., Namba, K., & Blocker, A. J. (2016). The Architecture of the Cytoplasmic Region of Type III Secretion Systems. Scientific Reports, 6(1).

Authors 10
  1. Fumiaki Makino (first)
  2. Dakang Shen (additional)
  3. Naoko Kajimura (additional)
  4. Akihiro Kawamoto (additional)
  5. Panayiota Pissaridou (additional)
  6. Henry Oswin (additional)
  7. Maria Pain (additional)
  8. Isabel Murillo (additional)
  9. Keiichi Namba (additional)
  10. Ariel J. Blocker (additional)
References 42 Referenced 35
  1. Burkinshaw, B. J. & Strynadka, N. C. Assembly and structure of the T3SS. Biochim Biophys Acta 1843, 1649–1663, doi: 10.1016/j.bbamcr.2014.01.035 (2014). (10.1016/j.bbamcr.2014.01.035) / Biochim Biophys Acta by BJ Burkinshaw (2014)
  2. Abrusci, P. et al. Architecture of the major component of the type III secretion system export apparatus. Nat Struct Mol Biol 20, 99–104, doi: 10.1038/nsmb.2452 (2013). (10.1038/nsmb.2452) / Nat Struct Mol Biol by P Abrusci (2013)
  3. Chen, S. et al. Structural diversity of bacterial flagellar motors. Embo J 30, 2972–2981, doi: 10.1038/emboj.2011.186 (2011). (10.1038/emboj.2011.186) / Embo J by S Chen (2011)
  4. Hu, B. et al. Visualization of the type III secretion sorting platform of Shigella flexneri. Proc Natl Acad Sci USA 112, 1047–1052, doi: 10.1073/pnas.1411610112 (2015). (10.1073/pnas.1411610112) / Proc Natl Acad Sci USA by B Hu (2015)
  5. Zhao, X., Norris, S. J. & Liu, J. Molecular architecture of the bacterial flagellar motor in cells. Biochemistry 53, 4323–4333, doi: 10.1021/bi500059y (2014). (10.1021/bi500059y) / Biochemistry by X Zhao (2014)
  6. Thomas, D. R., Francis, N. R., Xu, C. & DeRosier, D. J. The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonella enterica serovar Typhimurium. J Bacteriol 188, 7039–7048 (2006). (10.1128/JB.00552-06) / J Bacteriol by DR Thomas (2006)
  7. Ibuki, T. et al. Common architecture of the flagellar type III protein export apparatus and F- and V-type ATPases. Nat Struct Mol Biol 18, 277–282, doi: nsmb.1977 10.1038/nsmb.1977 (2011). (10.1038/nsmb.1977) / Nat Struct Mol Biol by T Ibuki (2011)
  8. Jouihri, N. et al. MxiK and MxiN interact with the Spa47 ATPase and are required for transit of the needle components MxiH and MxiI, but not of Ipa proteins, through the type III secretion apparatus of Shigella flexneri. Mol Microbiol 49, 755–767 (2003). (10.1046/j.1365-2958.2003.03590.x) / Mol Microbiol by N Jouihri (2003)
  9. Brown, P. N., Mathews, M. A., Joss, L. A., Hill, C. P. & Blair, D. F. Crystal structure of the flagellar rotor protein FliN from Thermotoga maritima. J Bacteriol 187, 2890–2902, doi: 10.1128/JB.187.8.2890-2902.2005 (2005). (10.1128/JB.187.8.2890-2902.2005) / J Bacteriol by PN Brown (2005)
  10. Park, S. Y., Lowder, B., Bilwes, A. M., Blair, D. F. & Crane, B. R. Structure of FliM provides insight into assembly of the switch complex in the bacterial flagella motor. Proc Natl Acad Sci USA 103, 11886–11891, doi: 10.1073/pnas.0602811103 (2006). (10.1073/pnas.0602811103) / Proc Natl Acad Sci USA by SY Park (2006)
  11. Notti, R. Q., Bhattacharya, S., Lilic, M. & Stebbins, C. E. A common assembly module in injectisome and flagellar type III secretion sorting platforms. Nat Commun 6, 7125, doi: 10.1038/ncomms8125 (2015). (10.1038/ncomms8125) / Nat Commun by RQ Notti (2015)
  12. Yu, X. J., Liu, M., Matthews, S. & Holden, D. W. Tandem translation generates a chaperone for the Salmonella type III secretion system protein SsaQ. J Biol Chem 286, 36098–36107, doi: 10.1074/jbc.M111.278663 (2011). (10.1074/jbc.M111.278663) / J Biol Chem by XJ Yu (2011)
  13. Bzymek, K. P., Hamaoka, B. Y. & Ghosh, P. Two translation products of Yersinia yscQ assemble to form a complex essential to type III secretion. Biochemistry 51, 1669–1677, doi: 10.1021/bi201792p (2012). (10.1021/bi201792p) / Biochemistry by KP Bzymek (2012)
  14. McDowell, M. A. et al. Characterisation of Shigella Spa33 and Thermotoga FliM/N reveals a new model for C-ring assembly in T3SS. Mol Microbiol 99, 749–766, doi: 10.1111/mmi.13267 (2016). (10.1111/mmi.13267) / Mol Microbiol by MA McDowell (2016)
  15. Zhao, R., Pathak, N., Jaffe, H., Reese, T. S. & Khan, S. FliN is a major structural protein of the C-ring in the Salmonella typhimurium flagellar basal body. J Mol Biol 261, 195–208, doi: 10.1006/jmbi.1996.0452 (1996). (10.1006/jmbi.1996.0452) / J Mol Biol by R Zhao (1996)
  16. Diepold, A., Kudryashev, M., Delalez, N. J., Berry, R. M. & Armitage, J. P. Composition, formation, and regulation of the cytosolic c-ring, a dynamic component of the type III secretion injectisome. PLoS Biol 13, e1002039, doi: 10.1371/journal.pbio.1002039 (2015). (10.1371/journal.pbio.1002039) / PLoS Biol by A Diepold (2015)
  17. Kawamoto, A. et al. Common and distinct structural features of Salmonella injectisome and flagellar basal body. Scientific reports 3, 3369, doi: 10.1038/srep03369 (2013). (10.1038/srep03369) / Scientific reports by A Kawamoto (2013)
  18. Kudryashev, M. et al. In situ structural analysis of the Yersinia enterocolitica injectisome. eLife 2, e00792, doi: 10.7554/eLife.00792 (2013). (10.7554/eLife.00792) / eLife by M Kudryashev (2013)
  19. Castano-Diez, D., Kudryashev, M., Arheit, M. & Stahlberg, H. Dynamo: a flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments. J Struct Biol 178, 139–151, doi: 10.1016/j.jsb.2011.12.017 (2012). (10.1016/j.jsb.2011.12.017) / J Struct Biol by D Castano-Diez (2012)
  20. Hodgkinson, J. L. et al. Three-dimensional reconstruction of the Shigella T3SS transmembrane regions reveals 12-fold symmetry and novel features throughout. Nat Struct Mol Biol 16, 477–485 (2009). (10.1038/nsmb.1599) / Nat Struct Mol Biol by JL Hodgkinson (2009)
  21. Schuch, R. & Maurelli, A. T. MxiM and MxiJ, base elements of the Mxi-Spa type III secretion system of Shigella, interact with and stabilize the MxiD secretin in the cell envelope. J Bacteriol 183, 6991–6998 (2001). (10.1128/JB.183.24.6991-6998.2001) / J Bacteriol by R Schuch (2001)
  22. Okon, M. et al. Structural characterization of the type-III pilot-secretin complex from Shigella flexneri. Structure 16, 1544–1554, doi: 10.1016/j.str.2008.08.006 (2008). (10.1016/j.str.2008.08.006) / Structure by M Okon (2008)
  23. Johnson, S. & Blocker, A. Characterization of soluble complexes of the Shigella flexneri type III secretion system ATPase. FEMS Microbiol Lett 286, 274–278 (2008). (10.1111/j.1574-6968.2008.01284.x) / FEMS Microbiol Lett by S Johnson (2008)
  24. Bahrani, F. K., Sansonetti, P. J. & Parsot, C. Secretion of Ipa proteins by Shigella flexneri: inducer molecules and kinetics of activation. Infect Immun 65, 4005–4010 (1997). (10.1128/iai.65.10.4005-4010.1997) / Infect Immun by FK Bahrani (1997)
  25. Cherradi, Y., Hachani, A. & Allaoui, A. Spa13 of Shigella flexneri has a dual role: chaperone escort and export gate-activator switch of the type III secretion system. Microbiology, doi: 10.1099/mic.0.071712-0 (2013). (10.1099/mic.0.071712-0)
  26. Schuch, R. & Maurelli, A. T. Spa33, a cell surface-associated subunit of the Mxi-Spa type III secretory pathway of Shigella flexneri, regulates Ipa protein traffic. Infect Immun 69, 2180–2189 (2001). (10.1128/IAI.69.4.2180-2189.2001) / Infect Immun by R Schuch (2001)
  27. Roblin, P., Dewitte, F., Villeret, V., Biondi, E. G. & Bompard, C. A Salmonella type three secretion effector/chaperone complex adopts a hexameric ring-like structure. J Bacteriol 197, 688–698, doi: 10.1128/JB.02294-14 (2015). (10.1128/JB.02294-14) / J Bacteriol by P Roblin (2015)
  28. Minamino, T. & MacNab, R. M. FliH, a soluble component of the type III flagellar export apparatus of Salmonella, forms a complex with FliI and inhibits its ATPase activity. Mol Microbiol 37, 1494–1503, doi: mmi2106 (2000). (10.1046/j.1365-2958.2000.02106.x) / Mol Microbiol by T Minamino (2000)
  29. Bai, F. et al. Assembly dynamics and the roles of FliI ATPase of the bacterial flagellar export apparatus. Scientific reports 4, 6528, doi: 10.1038/srep06528 (2014). (10.1038/srep06528) / Scientific reports by F Bai (2014)
  30. Minamino, T. & Imada, K. The bacterial flagellar motor and its structural diversity. Trends Microbiol 23, 267–274, doi: 10.1016/j.tim.2014.12.011 (2015). (10.1016/j.tim.2014.12.011) / Trends Microbiol by T Minamino (2015)
  31. Ibuki, T. et al. Interaction between FliJ and FlhA, components of the bacterial flagellar type III export apparatus. J Bacteriol 195, 466–473, doi: 10.1128/JB.01711-12 (2013). (10.1128/JB.01711-12) / J Bacteriol by T Ibuki (2013)
  32. Komoriya, K. et al. Flagellar proteins and type III-exported virulence factors are the predominant proteins secreted into the culture media of Salmonella typhimurium. Mol Microbiol 34, 767–779 (1999). (10.1046/j.1365-2958.1999.01639.x) / Mol Microbiol by K Komoriya (1999)
  33. Veenendaal, A. K. et al. The type III secretion system needle tip complex mediates host cell sensing and translocon insertion. Mol Microbiol 63, 1719–1730, doi: MMI5620 10.1111/j.1365-2958.2007.05620.x (2007). (10.1111/j.1365-2958.2007.05620.x) / Mol Microbiol by AK Veenendaal (2007)
  34. Kudryashev, M., Cyrklaff, M., Wallich, R., Baumeister, W. & Frischknecht, F. Distinct in situ structures of the Borrelia flagellar motor. J Struct Biol 169, 54–61, doi: 10.1016/j.jsb.2009.08.008 (2010). (10.1016/j.jsb.2009.08.008) / J Struct Biol by M Kudryashev (2010)
  35. Nans, A., Kudryashev, M., Saibil, H. R. & Hayward, R. D. Structure of a bacterial type III secretion system in contact with a host membrane in situ. Nat Commun 6, 10114, doi: 10.1038/ncomms10114 (2015). (10.1038/ncomms10114) / Nat Commun by A Nans (2015)
  36. Meitert, T. et al. Correlation between Congo red binding as virulence marker in Shigella species and Sereny test. Roum Arch Microbiol Immunol 50, 45–52 (1991). / Roum Arch Microbiol Immunol by T Meitert (1991)
  37. Martinez-Argudo, I. & Blocker, A. J. The Shigella T3SS needle transmits a signal for MxiC release, which controls secretion of effectors. Mol Microbiol 78, 1365–1378, doi: 10.1111/j.1365-2958.2010.07413.x (2010). (10.1111/j.1365-2958.2010.07413.x) / Mol Microbiol by I Martinez-Argudo (2010)
  38. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116, 71–76, doi: 10.1006/jsbi.1996.0013 (1996). (10.1006/jsbi.1996.0013) / J Struct Biol by JR Kremer (1996)
  39. Fernandez, J. J., Li, S. & Crowther, R. A. CTF determination and correction in electron cryotomography. Ultramicroscopy 106, 587–596, doi: 10.1016/j.ultramic.2006.02.004 (2006). (10.1016/j.ultramic.2006.02.004) / Ultramicroscopy by JJ Fernandez (2006)
  40. Ludtke, S. J., Baldwin, P. R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 128, 82–97, doi: 10.1006/jsbi.1999.4174 S1047-8477(99)94174-6 (1999). (10.1006/jsbi.1999.4174 S1047-8477(99)94174-6) / J Struct Biol by SJ Ludtke (1999)
  41. Shaikh, T. R. et al. SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nat Protoc 3, 1941–1974, doi: 10.1038/nprot.2008.156 (2008). (10.1038/nprot.2008.156) / Nat Protoc by TR Shaikh (2008)
  42. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180, 519–530, doi: 10.1016/j.jsb.2012.09.006 (2012). (10.1016/j.jsb.2012.09.006) / J Struct Biol by SH Scheres (2012)
Dates
Type When
Created 8 years, 11 months ago (Sept. 30, 2016, 4:51 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 2:12 a.m.)
Indexed 7 hours, 31 minutes ago (Sept. 3, 2025, 6:51 a.m.)
Issued 8 years, 11 months ago (Sept. 30, 2016)
Published 8 years, 11 months ago (Sept. 30, 2016)
Published Online 8 years, 11 months ago (Sept. 30, 2016)
Funders 0

None

@article{Makino_2016, title={The Architecture of the Cytoplasmic Region of Type III Secretion Systems}, volume={6}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep33341}, DOI={10.1038/srep33341}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Makino, Fumiaki and Shen, Dakang and Kajimura, Naoko and Kawamoto, Akihiro and Pissaridou, Panayiota and Oswin, Henry and Pain, Maria and Murillo, Isabel and Namba, Keiichi and Blocker, Ariel J.}, year={2016}, month=sep }