Abstract
AbstractThe understanding of domain structures, specifically domain walls, currently attracts a significant attention in the field of (multi)-ferroic materials. In this article, we analyze contrast formation in full field electron microscopy applied to domains and domain walls in the uniaxial ferroelectric lithium niobate, which presents a large 3.8 eV band gap and for which conductive domain walls have been reported. We show that the transition from Mirror Electron Microscopy (MEM – electrons reflected) to Low Energy Electron Microscopy (LEEM – electrons backscattered) gives rise to a robust contrast between domains with upwards (Pup) and downwards (Pdown) polarization, and provides a measure of the difference in surface potential between the domains. We demonstrate that out-of-focus conditions of imaging produce contrast inversion, due to image distortion induced by charged surfaces, and also carry information on the polarization direction in the domains. Finally, we show that the intensity profile at domain walls provides experimental evidence for a local stray, lateral electric field.
References
43
Referenced
23
-
Shur, V. Y., Akhmatkhanov, A. R. & Baturin, I. S. Micro- and nano-domain engineering in lithium niobate. Appl. Phys. Rev. 2, 040604 (2015).
(
10.1063/1.4928591
) / Appl. Phys. Rev. by VY Shur (2015) -
Wada, S., Kakemoto, H. & Tsurumi, T. Enhanced Piezoelectric Properties of Piezoelectric Single Crystals by Domain Engineering. Mater. Trans. 45, 178–187 (2004).
(
10.2320/matertrans.45.178
) / Mater. Trans. by S Wada (2004) -
Trassin, M., Luca, G. D., Manz, S. & Fiebig, M. Probing Ferroelectric Domain Engineering in BiFeO3 Thin Films by Second Harmonic Generation. Adv. Mater. 27, 4871–4876 (2015).
(
10.1002/adma.201501636
) / Adv. Mater. by M Trassin (2015) -
Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).
(
10.1038/nature01501
) / Nature by J Junquera (2003) -
Rault, J. E. et al. Thickness-Dependent Polarization of Strained BiFeO3 Films with Constant Tetragonality. Phys. Rev. Lett. 109, 267601 (2012).
(
10.1103/PhysRevLett.109.267601
) / Phys. Rev. Lett. by JE Rault (2012) -
Kalinin, S. V. et al. Atomic Polarization and Local Reactivity on Ferroelectric Surfaces: A New Route toward Complex Nanostructures. Nano Lett. 2, 589–593 (2002).
(
10.1021/nl025556u
) / Nano Lett. by SV Kalinin (2002) -
Kim, D. J. et al. Polarization Relaxation Induced by a Depolarization Field in Ultrathin Ferroelectric BaTiO3 Capacitors. Phys. Rev. Lett. 95, 237602 (2005).
(
10.1103/PhysRevLett.95.237602
) / Phys. Rev. Lett by DJ Kim (2005) -
Maksymovych, P. et al. Polarization Control of Electron Tunneling into Ferroelectric Surfaces. Science. 324, 1421–1425 (2009).
(
10.1126/science.1171200
) / Science by P Maksymovych (2009) -
Eliseev, E. A. et al. Conductivity of twin-domain-wall/surface junctions in ferroelastics: Interplay of deformation potential, octahedral rotations, improper ferroelectricity, and flexoelectric coupling. Phys. Rev. B 86, 085416 (2012).
(
10.1103/PhysRevB.86.085416
) / Phys. Rev. B by EA Eliseev (2012) -
Eliseev, E. A. et al. Surface effect on domain wall width in ferroelectrics. J. Appl. Phys. 106, 084102 (2009).
(
10.1063/1.3236644
) / J. Appl. Phys. by EA Eliseev (2009) -
Capek, P., Stone, G., Dierolf, V., Althouse, C. & Gopolan, V. Raman studies of ferroelectric domain walls in lithium tantalate and niobate. Phys. status solidi 4, 830–833 (2007).
(
10.1002/pssc.200673720
) / Phys. status solidi by P Capek (2007) -
Fontana, M. D., Hammoum, R., Bourson, P., Margueron, S. & Shur, V. Y. Raman Probe on PPLN Microstructures. Ferroelectrics 373, 26–31 (2008).
(
10.1080/00150190802408598
) / Ferroelectrics by MD Fontana (2008) -
Nataf, G. F., Guennou, M., Haußmann, A., Barrett, N. & Kreisel, J. Evolution of defect signatures at ferroelectric domain walls in Mg-doped LiNbO3 . Phys. status solidi–Rapid Res. Lett. 10, 222–226 (2016).
(
10.1002/pssr.201510303
) / Phys. status solidi–Rapid Res. Lett. by GF Nataf (2016) -
Kämpfe, T. et al. Real-time three-dimensional profiling of ferroelectric domain walls. Appl. Phys. Lett. 107, 152905 (2015).
(
10.1063/1.4933171
) / Appl. Phys. Lett. by T Kämpfe (2015) -
Dierolf, V., Sandmann, C., Kim, S., Gopalan, V. & Polgar, K. Ferroelectric domain imaging by defect-luminescence microscopy. J. Appl. Phys. 93, 2295 (2003).
(
10.1063/1.1538333
) / J. Appl. Phys. by V Dierolf (2003) -
Dierolf, V. & Sandmann, C. Combined excitation emission spectroscopy of defects for site-selective probing of ferroelectric domain inversion in lithium niobate. J. Lumin. 125, 67–79 (2007).
(
10.1016/j.jlumin.2006.08.054
) / J. Lumin. by V Dierolf (2007) -
Matzen, S. & Fusil, S. Domains and domain walls in multiferroics. Comptes Rendus Phys. 16, 227–240 (2015).
(
10.1016/j.crhy.2015.01.013
) / Comptes Rendus Phys by S Matzen (2015) -
Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–34 (2009).
(
10.1038/nmat2373
) / Nat. Mater. by J Seidel (2009) -
Foeth, M., Stadelmann, P. & Buffat, P. A. Quantitative determination of the thickness of ferroelectric domain walls using weak beam transmission electron microscopy. Ultramicroscopy 75, 203–213 (1999).
(
10.1016/S0304-3991(98)00060-6
) / Ultramicroscopy by M Foeth (1999) -
Borisevich, A. et al. Mapping octahedral tilts and polarization across a domain wall in BiFeO3 from Z-contrast scanning transmission electron microscopy image atomic column shape analysis. ACS Nano 4, 6071–9 (2010).
(
10.1021/nn1011539
) / ACS Nano by A Borisevich (2010) -
Neumayer, S. M. et al. Thickness, humidity, and polarization dependent ferroelectric switching and conductivity in Mg doped lithium niobate. J. Appl. Phys. 118, 244103 (2015).
(
10.1063/1.4938386
) / J. Appl. Phys. by SM Neumayer (2015) -
Schaab, J. et al. Imaging and characterization of conducting ferroelectric domain walls by photoemission electron microscopy. Appl. Phys. Lett. 104, 232904 (2014).
(
10.1063/1.4879260
) / Appl. Phys. Lett. by J Schaab (2014) -
Barrett, N. et al. Full field electron spectromicroscopy applied to ferroelectric materials. J. Appl. Phys. 113, 187217 (2013).
(
10.1063/1.4801968
) / J. Appl. Phys. by N Barrett (2013) -
Krug, I. et al. Extrinsic screening of ferroelectric domains in Pb(Zr0.48Ti0.52)O3 . Appl. Phys. Lett. 97, 222903 (2010).
(
10.1063/1.3523359
) / Appl. Phys. Lett. by I Krug (2010) -
Wang, J. L., Vilquin, B. & Barrett, N. Screening of ferroelectric domains on BaTiO3(001) surface by ultraviolet photo-induced charge and dissociative water adsorption. Appl. Phys. Lett. 101, 092902 (2012).
(
10.1063/1.4748330
) / Appl. Phys. Lett. by JL Wang (2012) -
Rault, J. E., Menteş, T. O., Locatelli, A. & Barrett, N. Reversible switching of in-plane polarized ferroelectric domains in BaTiO3(001) with very low energy electrons. Sci. Rep. 4, 6792 (2014).
(
10.1038/srep06792
) / Sci. Rep. by JE Rault (2014) -
English, F. L. Electron-Mirror-Microscope Analysis of Surface Potentials on Ferroelectrics. J. Appl. Phys. 39, 128 (1968).
(
10.1063/1.1655717
) / J. Appl. Phys. by FL English (1968) -
Maffitt, K. N. Interpretation of Electron-Mirror Micrographs of Ferroelectric and Dielectric Surfaces. J. Appl. Phys. 39, 3878 (1968).
(
10.1063/1.1656869
) / J. Appl. Phys. by KN Maffitt (1968) -
Cherifi, S. et al. Imaging ferroelectric domains in multiferroics using a low-energy electron microscope in the mirror operation mode. Phys. status solidi - Rapid Res. Lett. 4, 22–24 (2010).
(
10.1002/pssr.200903297
) / Phys. status solidi - Rapid Res. Lett by S Cherifi (2010) -
Schröder, M. et al. Conducting Domain Walls in Lithium Niobate Single Crystals. Adv. Funct. Mater. 22, 3936–3944 (2012).
(
10.1002/adfm.201201174
) / Adv. Funct. Mater. by M Schröder (2012) -
Furukawa, Y. et al. Investigation of Increased Photorefractive Damage Resistance in LiNbO3 by Two-Wave Mixing Measurements. Jpn. J. Appl. Phys. 35, 2740–2744 (1996).
(
10.1143/JJAP.35.2740
) / Jpn. J. Appl. Phys. by Y Furukawa (1996) -
Grabmaier, B. C., Wersing, W. & Koestler, W. Properties of undoped and MgO-doped LiNbO3; correlation to the defect structure. J. Cryst. Growth 110, 339–347 (1991).
(
10.1016/0022-0248(91)90269-B
) / J. Cryst. Growth by BC Grabmaier (1991) -
Yang, W.-C., Rodriguez, B. J., Gruverman, A. & Nemanich, R. J. Polarization-dependent electron affinity of LiNbO3 surfaces. Appl. Phys. Lett. 85, 2316 (2004).
(
10.1063/1.1790604
) / Appl. Phys. Lett. by W-C Yang (2004) -
Liu, X., Kitamura, K. & Terabe, K. Surface potential imaging of nanoscale LiNbO3 domains investigated by electrostatic force microscopy. Appl. Phys. Lett. 89, 132905 (2006).
(
10.1063/1.2358115
) / Appl. Phys. Lett. by X Liu (2006) -
Kalinin, S. V. & Bonnell, D. A. Local potential and polarization screening on ferroelectric surfaces. Phys. Rev. B 63, 125411 (2001).
(
10.1103/PhysRevB.63.125411
) / Phys. Rev. B by SV Kalinin (2001) -
Sun, Q.-C. et al. Spectroscopic signatures of domain walls in hexagonal ErMnO3. Phys. Rev. B 90, 121303 (2014).
(
10.1103/PhysRevB.90.121303
) / Phys. Rev. B by Q-C Sun (2014) -
Nepijko, S. A., Sedov, N. N. & Schönhense, G. Peculiarities of imaging one- and two-dimensional structures using an electron microscope in the mirror operation mode. J. Microsc. 203, 269–76 (2001).
(
10.1046/j.1365-2818.2001.00895.x
) / J. Microsc. by SA Nepijko (2001) -
Kennedy, S. M., Jesson, D. E. & Paganin, D. M. Laplacian and caustic imaging theories of MEM work-function contrast. IBM J. Res. Dev. 55, 3, 1–3, 8 (2011).
(
10.1147/JRD.2011.2143310
) / IBM J. Res. Dev by SM Kennedy (2011) - Kennedy, S. M., Zheng, C. X., Tang, W. X., Paganin, D. M. & Jesson, D. E. Laplacian image contrast in mirror electron microscopy. Proc. R. Soc. A Math. Phys. Eng. Sci. 466, 2857–2874 (2010). / Proc. R. Soc. A Math. Phys. Eng. Sci by SM Kennedy (2010)
-
Lavayssière, M., Escher, M., Renault, O., Mariolle, D. & Barrett, N. Electrical and physical topography in energy-filtered photoelectron emission microscopy of two-dimensional silicon pn junctions. J. Electron Spectros. Relat. Phenomena 186, 30–38 (2013).
(
10.1016/j.elspec.2013.01.014
) / J. Electron Spectros. Relat. Phenomena by M Lavayssière (2013) -
Sones, C. L., Mailis, S., Brocklesby, W. S., Eason, R. W. & Owen, J. R. Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations. J. Mater. Chem. 12, 295–298 (2002).
(
10.1039/b106279b
) / J. Mater. Chem. by CL Sones (2002) -
Nepijko, S. A. & Sedov, N. N. In Adv. Imaging Electron Phys. 102, 273–323 (1997).
(
10.1016/S1076-5670(08)70125-3
) / Imaging Electron Phys by SA Nepijko (1997) -
Nepijko, S. A. et al. Imaging of three-dimensional objects in emission electron microscopy. J. Microsc. 202, 480–487 (2001).
(
10.1046/j.1365-2818.2001.00846.x
) / J. Microsc. by SA Nepijko (2001)
Dates
Type | When |
---|---|
Created | 8 years, 11 months ago (Sept. 9, 2016, 6:32 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 4, 2023, 7:49 p.m.) |
Indexed | 4 months, 2 weeks ago (April 7, 2025, 8:03 a.m.) |
Issued | 8 years, 11 months ago (Sept. 9, 2016) |
Published | 8 years, 11 months ago (Sept. 9, 2016) |
Published Online | 8 years, 11 months ago (Sept. 9, 2016) |
@article{Nataf_2016, title={Low energy electron imaging of domains and domain walls in magnesium-doped lithium niobate}, volume={6}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep33098}, DOI={10.1038/srep33098}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Nataf, G. F. and Grysan, P. and Guennou, M. and Kreisel, J. and Martinotti, D. and Rountree, C. L. and Mathieu, C. and Barrett, N.}, year={2016}, month=sep }