Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractEffective control of the domain wall (DW) motion along the magnetic nanowires is of great importance for fundamental research and potential application in spintronic devices. In this work, a series of permalloy nanowires with an asymmetric notch in the middle were fabricated with only varying the width (d) of the right arm from 200 nm to 1000 nm. The detailed pinning and depinning processes of DWs in these nanowires have been studied by using focused magneto-optic Kerr effect (FMOKE) magnetometer, magnetic force microscopy (MFM) and micromagnetic simulation. The experimental results unambiguously exhibit the presence of a DW pinned at the notch in a typical sample with d equal to 500 nm. At a certain range of 200 nm < d < 500 nm, both the experimental and simulated results show that the DW can maintain or change its chirality randomly during passing through the notch, resulting in two DW depinning fields. Those two depinning fields have opposite d dependences, which may be originated from different potential well/barrier generated by the asymmetric notch with varying d.

Bibliography

Gao, Y., You, B., Ruan, X. Z., Liu, M. Y., Yang, H. L., Zhan, Q. F., Li, Z., Lei, N., Zhao, W. S., Pan, D. F., Wan, J. G., Wu, J., Tu, H. Q., Wang, J., Zhang, W., Xu, Y. B., & Du, J. (2016). Depinning of domain walls in permalloy nanowires with asymmetric notches. Scientific Reports, 6(1).

Authors 17
  1. Y. Gao (first)
  2. B. You (additional)
  3. X. Z. Ruan (additional)
  4. M. Y. Liu (additional)
  5. H. L. Yang (additional)
  6. Q. F. Zhan (additional)
  7. Z. Li (additional)
  8. N. Lei (additional)
  9. W. S. Zhao (additional)
  10. D. F. Pan (additional)
  11. J. G. Wan (additional)
  12. J. Wu (additional)
  13. H. Q. Tu (additional)
  14. J. Wang (additional)
  15. W. Zhang (additional)
  16. Y. B. Xu (additional)
  17. J. Du (additional)
References 27 Referenced 21
  1. S. S. P. Parkin, M. Hayashi & L. Thomas . Magnetic Domain-Wall Racetrack Memory. Science 320, 190 (2008). (10.1126/science.1145799) / Science by SSP Parkin (2008)
  2. D. Petit, A.-V. Jausovec, D. Read & R. P. Cowburn . Domain wall pinning and potential landscapes created by constrictions and protrusions in ferromagnetic nanowires. J. Appl. Phys. 103, 114307 (2008). (10.1063/1.2936981) / J. Appl. Phys. by D Petit (2008)
  3. A. Ding, I. Will, C. Lu & Y. B. Xu . Vortex Domain Wall Formation in Nanowires With Twin Pinning Sites. IEEE Trans. Magn. 48, 2304 (2012). (10.1109/TMAG.2012.2191974) / IEEE Trans. Magn. by A Ding (2012)
  4. Z. Chen. et al. The magnetic Y-branch nanojunction: Domain-wall structure and magneto-resistance. Appl. Phys. Lett. 101, 102403 (2012). (10.1063/1.4750240) / Appl. Phys. Lett. by Z Chen. (2012)
  5. U. Ebels, A. Radulescu, Y. Henry, L. Piraux & K. Ounadjela . Spin Accumulation and Domain Wall Magnetoresistance in 35 nm Co Wires. Phys. Rev. Lett. 84, 983 (2000). (10.1103/PhysRevLett.84.983) / Phys. Rev. Lett. by U Ebels (2000)
  6. Y. B. Xu. et al. Magnetoresistance of a domain wall at a submicron junction. Phys. Rev. B 61, R14901 (2000). (10.1103/PhysRevB.61.R14901) / Phys. Rev. B by YB Xu. (2000)
  7. P. M. Levy & S. Zhang . Resistivity due to Domain Wall Scattering. Phys. Rev. Lett. 79, 5110 (1997). (10.1103/PhysRevLett.79.5110) / Phys. Rev. Lett. by PM Levy (1997)
  8. S. Lepadatu & Y. Xu . Direct Observation of Domain Wall Scattering in Patterned Ni80Fe20 and Ni Nanowires by Current-Voltage Measurements. Phys. Rev. Lett. 92, 127201 (2004). (10.1103/PhysRevLett.92.127201) / Phys. Rev. Lett. by S Lepadatu (2004)
  9. S. Lepadatu, J. Wu & Y. B. Xu . Current-induced magnetization switching in asymmetric necked wires. Appl. Phys. Lett. 91, 062512 (2007). (10.1063/1.2768301) / Appl. Phys. Lett. by S Lepadatu (2007)
  10. S. Lepadatu, A. Vanhaverbeke, D. Atkinson, R. Allenspach & C. Marrows . Dependence of Domain-Wall Depinning Threshold Current on Pinning Profile. Phys. Rev. Lett. 102, 127203 (2009). (10.1103/PhysRevLett.102.127203) / Phys. Rev. Lett. by S Lepadatu (2009)
  11. W. Zhu. et al. Depinning of vortex domain walls from an asymmetric notch in a permalloy nanowire. Appl. Phys. Lett. 101, 082402 (2012). (10.1063/1.4745788) / Appl. Phys. Lett. by W Zhu. (2012)
  12. X. F. Hu. et al. Discontinuous properties of current-induced magnetic domain wall depinning. Sci. Rep 3, 3080 (2013). (10.1038/srep03080) / Sci. Rep by XF Hu. (2013)
  13. S. Lepadatu. et al. Experimental determination of spin-transfer torque nonadiabaticity parameter and spin polarization in permalloy. Phys. Rev. B 79, 094402 (2009). (10.1103/PhysRevB.79.094402) / Phys. Rev. B by S Lepadatu. (2009)
  14. A. Ding, I. Will & Y. B. Xu . MFM Observation of Twin Pinning Sites on NiFe Nanowires. IEEE Trans. Magn. 49, 1334 (2013). (10.1109/TMAG.2012.2216540) / IEEE Trans. Magn. by A Ding (2013)
  15. G. Meier. et al. Direct Imaging of Stochastic Domain-Wall Motion Driven by Nanosecond Current Pulses. Phys. Rev. Lett. 98, 187202 (2007). (10.1103/PhysRevLett.98.187202) / Phys. Rev. Lett. by G Meier. (2007)
  16. L. K. Bogart, D. Atkinson, K. O’Shea, D. McGrouther & S. McVitie . Dependence of domain wall pinning potential landscapes on domain wall chirality and pinning site geometry in planar nanowires. Phys. Rev. B 79, 054414 (2009). (10.1103/PhysRevB.79.054414) / Phys. Rev. B by LK Bogart (2009)
  17. K. He, D. J. Smith & M. R. McCartney . Observation of asymmetrical pinning of domain walls in notched Permalloy nanowires using electron holography. Appl. Phys. Lett. 95, 182507 (2009). (10.1063/1.3261753) / Appl. Phys. Lett. by K He (2009)
  18. J. Akerman, M. Muñoz, M. Maicas & J. L. Prieto . Stochastic nature of the domain wall depinning in permalloy magnetic nanowires. Phys. Rev. B 82, 064426 (2010). (10.1103/PhysRevB.82.064426) / Phys. Rev. B by J Akerman (2010)
  19. D. Atkinson, D. S. Eastwood & L. K. Bogart . Controlling domain wall pinning in planar nanowires by selecting domain wall type and its application in a memory concept. Appl. Phys. Lett. 92, 022510 (2008). (10.1063/1.2832771) / Appl. Phys. Lett. by D Atkinson (2008)
  20. L. K. Bogart, D. S. Eastwood & D. Atkinson . The effect of geometrical confinement and chirality on domain wall pinning behavior in planar nanowires. J. Appl. Phys. 104, 033904 (2008). (10.1063/1.2961313) / J. Appl. Phys. by LK Bogart (2008)
  21. G. D. Li. et al. Magnetic Domain Wall Formation in Ferromagnetic Wires With a Nanoconstriction. IEEE Trans. Magn. 43, 2830 (2007). (10.1109/TMAG.2007.893796) / IEEE Trans. Magn. by GD Li. (2007)
  22. J. Brandão. et al. Control of the magnetic vortex chirality in Permalloy nanowires with asymmetric notches. J. Appl. Phys. 116, 193902 (2014). (10.1063/1.4902008) / J. Appl. Phys. by J Brandão. (2014)
  23. T.-C. Chen, C.-Y. Kuo, A. K. Mishra, B. Das & J.-C. Wu . Magnetic domain wall motion in notch patterned permalloy nanowire devices. Physica B 476, 161 (2015). (10.1016/j.physb.2015.04.004) / Physica B by T-C Chen (2015)
  24. A. Pushp. et al. Domain wall trajectory determined by its fractional topological edge defects. Nature Physics 9, 505 (2013). (10.1038/nphys2669) / Nature Physics by A Pushp. (2013)
  25. Y. Nakatani, A. Thiaville & J. Miltat . Faster magnetic walls in rough wires. Nat. Mater. 2, 521 (2003). (10.1038/nmat931) / Nat. Mater. by Y Nakatani (2003)
  26. V. O. Dolocan . Domain wall pinning and interaction in rough cylindrical nanowires. Appl. Phys. Lett. 105, 162401 (2014). (10.1063/1.4899128) / Appl. Phys. Lett. by VO Dolocan (2014)
  27. R. P. Cowburn, D. A. Allwood, G. Xiong & M. D. Cooke . Domain wall injection and propagation in planar Permalloy nanowires. J. Appl. Phys. 91, 6949 (2002). (10.1063/1.1447500) / J. Appl. Phys. by RP Cowburn (2002)
Dates
Type When
Created 8 years, 11 months ago (Sept. 7, 2016, 6:26 a.m.)
Deposited 2 years, 7 months ago (Jan. 4, 2023, 6:43 p.m.)
Indexed 4 months, 1 week ago (April 23, 2025, 6:26 a.m.)
Issued 8 years, 11 months ago (Sept. 7, 2016)
Published 8 years, 11 months ago (Sept. 7, 2016)
Published Online 8 years, 11 months ago (Sept. 7, 2016)
Funders 0

None

@article{Gao_2016, title={Depinning of domain walls in permalloy nanowires with asymmetric notches}, volume={6}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep32617}, DOI={10.1038/srep32617}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Gao, Y. and You, B. and Ruan, X. Z. and Liu, M. Y. and Yang, H. L. and Zhan, Q. F. and Li, Z. and Lei, N. and Zhao, W. S. and Pan, D. F. and Wan, J. G. and Wu, J. and Tu, H. Q. and Wang, J. and Zhang, W. and Xu, Y. B. and Du, J.}, year={2016}, month=sep }