Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractTo reveal the origin of the CO oxidation activity of Ruthenium nanoparticles (Ru NPs), we structurally characterized Ru NPs through Rietveld refinement analysis of high-energy X-ray diffraction data. For hexagonal close-packed (hcp) Ru NPs, the CO oxidation activity decreased with decreasing domain surface area. However, for face-centered cubic (fcc) Ru NPs, the CO oxidation activity became stronger with decreasing domain surface area. In comparing fcc Ru NPs with hcp Ru NPs, we found that the hcp Ru NPs of approximately 2 nm, which had a smaller domain surface area and smaller atomic displacement, showed a higher catalytic activity than that of fcc Ru NPs of the same size. In contrast, fcc Ru NPs larger than 3.5 nm, which had a larger domain surface area, lattice distortion and larger atomic displacement, exhibited higher catalytic activity than that of hcp Ru NPs of the same size. In addition, the fcc Ru NPs had larger atomic displacements than hcp Ru NPs for diameters ranging from 2.2 to 5.4 nm. Enhancement of the CO oxidation activity in fcc Ru NPs may be caused by an increase in imperfections due to lattice distortions of close-packed planes and static atomic displacements.

Bibliography

Song, C., Sakata, O., Kumara, L. S. R., Kohara, S., Yang, A., Kusada, K., Kobayashi, H., & Kitagawa, H. (2016). Size dependence of structural parameters in fcc and hcp Ru nanoparticles, revealed by Rietveld refinement analysis of high-energy X-ray diffraction data. Scientific Reports, 6(1).

Authors 8
  1. Chulho Song (first)
  2. Osami Sakata (additional)
  3. Loku Singgappulige Rosantha Kumara (additional)
  4. Shinji Kohara (additional)
  5. Anli Yang (additional)
  6. Kohei Kusada (additional)
  7. Hirokazu Kobayashi (additional)
  8. Hiroshi Kitagawa (additional)
References 26 Referenced 60
  1. Perkas, N. et al. Supported Ru catalysts prepared by two sonication-assisted methods for preferential oxidation of CO in H2 . Phys. Chem. Chem. Phys. 13, 15690–15698 (2011). (10.1039/c1cp21870k) / Phys. Chem. Chem. Phys. by N Perkas (2011)
  2. Carballo, J. M. G. et al. Catalytic effects of ruthenium particle size on the Fischer-Tropsch Synthesis. J. Catal. 284, 102–108 (2011). (10.1016/j.jcat.2011.09.008) / J. Catal. by JMG Carballo (2011)
  3. Kim, Y. H., Yim, S. D. & Park, E. D. Selective CO oxidation in a hydrogen-rich stream over Ru/SiO2 Catal. Today 185, 143–150 (2012). (10.1016/j.cattod.2011.07.022) / Catal. Today by YH Kim (2012)
  4. Strebel, C., Murphy, S., Nielsen, R. M., Nielsen, J. H. & Chorkendorff, I. Probing the active sites for CO dissociation on ruthenium nanoparticles. Phys. Chem. Chem. Phys. 14, 8005–8012 (2012). (10.1039/c2cp40369b) / Phys. Chem. Chem. Phys. by C Strebel (2012)
  5. Wendt, S., Knapp, M. & Over, H. The Role of Weakly Bound On-Top Oxygen in the Catalytic CO Oxidation Reaction over RuO2(110). J. Am. Chem. Soc. 126, 1537–1541 (2004). (10.1021/ja0364423) / J. Am. Chem. Soc. by S Wendt (2004)
  6. Kusada, K. et al. Discovery of Face-Centered-Cubic Ruthenium Nanoparticles: Facile Size-Controlled Synthesis Using the Chemical Reduction Method. J. Am. Chem. Soc. 135, 5493–5496 (2013). (10.1021/ja311261s) / J. Am. Chem. Soc. by K Kusada (2013)
  7. Häglund, J., Guillermet, A. F., Grimvall, G. & Körling, M. Theory of bonding in transition-metal carbides and nitrides. Phys. Rev. B 48, 11685–11691 (1993). (10.1103/PhysRevB.48.11685) / Phys. Rev. B by J Häglund (1993)
  8. Viau, G. et al. Ruthenium Nanoparticles: Size, Shape and Self-Assemblies. Chem. Mater. 15, 486–494 (2003). (10.1021/cm0212109) / Chem. Mater. by G Viau (2003)
  9. Zawadzki, M. & Okal, J. Synthesis and structure characterization of Ru nanoparticles stabilized by PVP or γ-Al2O3 . Materials Research Bulletin 43, 3111–3121 (2008). (10.1016/j.materresbull.2007.11.006) / Materials Research Bulletin by M Zawadzki (2008)
  10. Bedford, N., Dablemont, C., Viau, G., Chupas, P. & Petkov, V. 3-D Structure of Nanosized Catalysts by High-Energy X-ray Diffraction and Reverse Monte Carlo Simulations: Study of Ru. J. Phys. Chem. 111, 18214–18219 (2007). / J. Phys. Chem. by N Bedford (2007)
  11. Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71 (1969). (10.1107/S0021889869006558) / J. Appl. Cryst. by HM Rietveld (1969)
  12. Arblaster, J. W. Crystallographic Properties of Ruthenium. Platinum Metals Rev. 57, 127–136 (2013). (10.1595/147106713X665030) / Platinum Metals Rev. by JW Arblaster (2013)
  13. Qi, W. H., Wang, M. P. & Su, Y. C. Size effect on the lattice parameters of nanoparticles. J. Mater. Sci. Lett. 21, 877–878 (2002). (10.1023/A:1015778729898) / J. Mater. Sci. Lett. by WH Qi (2002)
  14. Qi, W. H. & Wang, M. P. Size and shape dependent lattice parameters of metallic nanoparticles. J. Nanopart. Res. 7, 51–57 (2005). (10.1007/s11051-004-7771-9) / J. Nanopart. Res. by WH Qi (2005)
  15. da Silva, E. Z. & Antonelli, A. Size dependence of the lattice parameter for Pd clusters: A molecular-dynamics study. Phys. Rev. B 54, 17057–17060 (1996). (10.1103/PhysRevB.54.17057) / Phys. Rev. B by EZ da Silva (1996)
  16. Lamber, R., Wetjen, S. & Jaeger, N. I. Size dependence of the lattice parameter of small palladium particles. Phys. Rev. B 51, 10968–10971 (1995). (10.1103/PhysRevB.51.10968) / Phys. Rev. B by R Lamber (1995)
  17. Montano, P. A., Shenoy, G. K., Alp, E. E., Schulze, W. & Urban, J. Structure of Copper microclusters isolated in solid argon. Phys. Rev. Lett. 56, 2706–2709 (1986). (10.1103/PhysRevLett.56.2076) / Phys. Rev. Lett. by PA Montano (1986)
  18. Montano, P. A., Schulze, W., Tesche, B., Shenoy, G. K. & Morrison, T. I. Extended x-ray-absorption fine-structure study of Ag particles isolated in solid argon. Phys. Rev. B 30, 672–677 (1984). (10.1103/PhysRevB.30.672) / Phys. Rev. B by PA Montano (1984)
  19. Apai, G., Hamilton, J. F., Stohr, J. & Thompson, A. Extended X-ray-absorption fine structure of small Cu and Ni clusters: Binding-energy and bond-length changes with cluster size. Phys. Rev. Lett. 43, 165–169 (1979). (10.1103/PhysRevLett.43.165) / Phys. Rev. Lett. by G Apai (1979)
  20. Reuter, K. & Scheffler, M. Composition and structure of the RuO2(110) surface in an O2 and CO environment: Implications for the catalytic formation of CO2 . Phys. Rev. B 68, 045407 (2003). (10.1103/PhysRevB.68.045407) / Phys. Rev. B by K Reuter (2003)
  21. Gong, X., Liu, Z., Raval, R. & Hu, P. A Systematic Study of CO Oxidation on Metals and Metal Oxides: Density Functional Theory Calculations. J. Am. Chem. Soc. 126, 8–9 (2004). (10.1021/ja030392k) / J. Am. Chem. Soc. by X Gong (2004)
  22. Over, H. et al. Atomic-Scale Structure and Catalytic Reactivity of the RuO2(110) Surface. Science 287, 1474–1476 (2000). (10.1126/science.287.5457.1474) / Science by H Over (2000)
  23. Zhong, X., Yang, B., Zhang, X., Jia, J. & Yi, G. Effect of calcining temperature and time on the characteristics of Sb-doped SnO2 nanoparticles synthesized by the sol-gel method. Particuology 10, 365–370 (2012). (10.1016/j.partic.2011.09.005) / Particuology by X Zhong (2012)
  24. Gaber, A., Abdel-Rahim, M. A., Abdel-Latief, A. Y. & Abdel-Salam, M. N. Influence of Calcination Temperature on the Structure and Porosity of Nanocrystalline SnO2 Synthesized by a Conventional Precipitation method. Int. J. Electrochem. Sci. 9, 81–95 (2014). (10.1016/S1452-3981(23)07699-X) / Int. J. Electrochem. Sci. by A Gaber (2014)
  25. Indrea, E., Suciu, R.-C., Rosu, M.-C. & Silipas, T.-D. Rietveld analysis of nanocrystalline titania prepared by sol-gel method. Rev. Roum. Chim. 56, 613–618 (2011). / Rev. Roum. Chim. by E Indrea (2011)
  26. James, R. W. The Optical Principles of the Diffraction of X-rays (Ox Bow Press: Woodbridge, Connecticut, 1962).
Dates
Type When
Created 9 years ago (Aug. 10, 2016, 5:45 a.m.)
Deposited 2 years ago (Aug. 19, 2023, 12:16 p.m.)
Indexed 1 week, 3 days ago (Aug. 19, 2025, 5:58 a.m.)
Issued 9 years ago (Aug. 10, 2016)
Published 9 years ago (Aug. 10, 2016)
Published Online 9 years ago (Aug. 10, 2016)
Funders 0

None

@article{Song_2016, title={Size dependence of structural parameters in fcc and hcp Ru nanoparticles, revealed by Rietveld refinement analysis of high-energy X-ray diffraction data}, volume={6}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep31400}, DOI={10.1038/srep31400}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Song, Chulho and Sakata, Osami and Kumara, Loku Singgappulige Rosantha and Kohara, Shinji and Yang, Anli and Kusada, Kohei and Kobayashi, Hirokazu and Kitagawa, Hiroshi}, year={2016}, month=aug }