Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractA theoretical explanation of a time-to-failure relation is presented, with this relationship "Equation missing" then used to describe the failure of materials. This provides the potential to predict timing (tf − t) immediately before failure by extrapolating the trajectory "Equation missing" as it asymptotes to zero with no need to fit unknown exponents as previously proposed in critical power law behaviors. This generalized relation is verified by comparison with approaches to criticality for volcanic eruptions and creep failure. A new relation based on changes with stress is proposed as an alternative expression of Voight’s relation, which is widely used to describe the accelerating precursory signals before material failure and broadly applied to volcanic eruptions, landslides and other phenomena. The new generalized relation reduces to Voight’s relation if stress is limited to increase at a constant rate with time. This implies that the time-derivatives in Voight’s analysis may be a subset of a more general expression connecting stress derivatives, and thus provides a potential method for forecasting these events.

Bibliography

Hao, S., Liu, C., Lu, C., & Elsworth, D. (2016). A relation to predict the failure of materials and potential application to volcanic eruptions and landslides. Scientific Reports, 6(1).

Authors 4
  1. Shengwang Hao (first)
  2. Chao Liu (additional)
  3. Chunsheng Lu (additional)
  4. Derek Elsworth (additional)
References 29 Referenced 49
  1. Voight, B. A relation to describe rate-dependent material failure, Science 243, 200–203 (1989). (10.1126/science.243.4888.200) / Science by B Voight (1989)
  2. Voight B. A method for prediction of volcanic eruptions. Nature 332, 125–130, doi: 10.1038/332125a0 (1988). (10.1038/332125a0) / Nature by B Voight (1988)
  3. Cornelius, R. R. & Voight, B. Graphical and PC-software analysis of volcano eruption precursors according to the materials failure forecast method (FFM). J. Volcanol. Geotherm. Res. 64, 295–320 (1995). (10.1016/0377-0273(94)00078-U) / J. Volcanol. Geotherm. Res. by RR Cornelius (1995)
  4. Kilburn, C. R. J. Multiscale fracturing as a key to forecasting volcanic eruptions, J. Volcanol. Geotherm. Res. 125, 271–289, doi: 10.1016/S0377-0273(03)00117-3 (2003). (10.1016/S0377-0273(03)00117-3) / J. Volcanol. Geotherm. Res. by CRJ Kilburn (2003)
  5. Voight, B. & Cornelius, R. R. Prospects for eruption prediction in near real-time. Nature 350, 695–698, doi: 10.1038/350695a0 (1991). (10.1038/350695a0) / Nature by B Voight (1991)
  6. McGuire, W. J. & Kilburn, C. R. J. Forecasting volcanic events: some contemporary issues, Geol. Rundsch. 86, 439–445 (1997). (10.1007/s005310050152) / Geol. Rundsch. by WJ McGuire (1997)
  7. Kilburn, C. R. J. & Voight, B. Slow rock fracture as eruption precursor at Soufriere Hills volcano, Montserrat, Geophys. Res. Lett. 25(19), 3665–3668, doi: 10.1029/98GL01609 (1998). (10.1029/98GL01609) / Geophys. Res. Lett. by CRJ Kilburn (1998)
  8. De la Cruz-Reyna, S. & Reyes-Davila, G. A. A model to describe precursory material-failure phenomena: Applications to short-term forecasting at Colima volcano, Mexico. Bull. Volcanol. 63, 297–308 (2001). (10.1007/s004450100152) / Mexico. Bull. Volcanol. by S De la Cruz-Reyna (2001)
  9. Sparks, R. S. J. Forecasting volcanic eruptions, Earth planet. Sci. Lett. 210, 1–15, doi: 10.1016/S0012-812X(03)00124-9 (2003). (10.1016/S0012-812X(03)00124-9) / Earth planet. Sci. Lett. by RSJ Sparks (2003)
  10. Lavallée, Y. et al. Seismogenic lavas and explosive eruption forecasting, Nature 453, 507–510, doi: 10.1038/nature06980 (2008). (10.1038/nature06980) / Nature by Y Lavallée (2008)
  11. Chastin, S. F. M. & Main, I. G. Statistical analysis of daily seismic event rate as a precursor to volcanic eruptions, Geophys. Res. Lett. 30, L24617, doi: 10.1029/2003GL016900 (2003). (10.1029/2003GL016900) / Geophys. Res. Lett. by SFM Chastin (2003)
  12. Smith, R., Kilburn, C. R. J. & Sammonds, P. R. Rock fracture as a precursor to lava dome eruptions at Mount St Helens from June 1980 to October 1986. Bull. Volcanol. 69, 681–693 (2007). (10.1007/s00445-006-0102-5) / Bull. Volcanol by R Smith (2007)
  13. Collombet, M., Grasso, J. R. & Ferrazzini, V. Seismicity rate before eruptions on Piton de la Fournaise volcano: implications for eruption dynamics, Geophys. Res. Lett. 30(21), 2099, doi: 10.1029/2003GL017494 (2003). (10.1029/2003GL017494) / Geophys. Res. Lett. by M Collombet (2003)
  14. Petley, D. N., Higuchi, T., Petley, D. J., Bulmer, M. H. & Carey, J. Development of progressive landslide failure in cohesive materials. Geology 33(3), 201–204, doi: 10.1130/G21147.1 (2005). (10.1130/G21147.1) / Geology by DN Petley (2005)
  15. Saito, M. Forecasting the time of occurrence of a slope failure. In: Proceedings of 6th international conference on soil mechanics and foundation engineering, Montreal. Toronto: University of Toronto Press, 537–541 (1965, September 8–15).
  16. Saito, M. Forecasting time of slope failure by tertiary creep. In: Proceedings of 7th international conference on soil mechanics and foundation engineering, Mexico, 677–683 (1969).
  17. Fukuzono, T. A new method for predicting the failure time of a slope. In: Proc. IVth Int. Conference and Field Workshop on Landslides, Tokyo, Tokyo University Press, 145–150 (1985).
  18. Nechad, H., Helmstetter, A. R., Guerjouma, E. & Sornette, D. Andrade creep and critical time-to-failure laws in heterogeneous materials. Phys. Rev. Lett. 94, 045501, doi: 10.1016/j.jmps.2004.12.001 (2005). (10.1016/j.jmps.2004.12.001) / Phys. Rev. Lett. by H Nechad (2005)
  19. Heap, M. J., Baud, P., Meredith, P. G., Bell, A. F. & Main, I. G. Time-dependent brittle creep in Darley Dale sandstone. J. Geophys. Res. 114, B07203, doi: 10.1029/2008JB006212 (2009). (10.1029/2008JB006212) / J. Geophys. Res. by MJ Heap (2009)
  20. Bell, A. F., Naylor, M., Heap, M. J. & Main, I. G. Forecasting volcanic eruptions and other material failure phenomena: An evaluation of the failure forecast method. Geophys. Res. Lett. 38, L15304, doi: 10.1029/2011GL048155 (2011). (10.1029/2011GL048155) / Geophys. Res. Lett. by AF Bell (2011)
  21. Main, I. G. Applicability of time‐to‐failure analysis to accelerated strain before earthquakes and volcanic eruptions, Geophys. J. Int. 139(3), F1–F6, doi: 10.1046/j.1365-246x.1999.00004.x (1999). (10.1046/j.1365-246x.1999.00004.x) / Geophys. J. Int. by IG Main (1999)
  22. Cornelius, R. R. & Scott, P. A. A materials failure relation of accelerating creep as empirical description of damage accumulation. Rock Mech Rock Eng. 26 (3), 233–252 (1993). (10.1007/BF01040117) / Rock Mech Rock Eng. by RR Cornelius (1993)
  23. Vere-Jones, D., Robinson, R. & Yang, W. Z. Remarks on the accelerated moment release model: problems of model formulation, simulation and estimation, Geophys. J. Int. 144, 517–531 (2001). (10.1046/j.1365-246x.2001.01348.x) / Geophys. J. Int. by D Vere-Jones (2001)
  24. Hardebeck, J. L., Felzer, K. R. & Michael, A. J. Improved tests reveal that the accelerating moment release hypothesis is statistically insignificant, J. geophys. Res. 113, B08310, doi: 10.1029/2007JB005410 (2008). (10.1029/2007JB005410) / J. geophys. Res. by JL Hardebeck (2008)
  25. Greenhough, J., Bell, A. F. & Main, I. G. Comment on “Relationship between accelerating seismicity and quiescence, two precursors to large earthquakes” by Arnaud Mignan and Rita Di Giovambattista, Geophys. Res. Lett. 36, L17303, doi: 10.1029/2009GL039846 (2009). (10.1029/2009GL039846) / Geophys. Res. Lett. by J Greenhough (2009)
  26. Kilburn, C. R. J. Precursory deformation and fracture before brittle rock failure and potential application to volcanic unrest. J. Geophys. Res. 117, B02211, doi: 10.1029/2011JB008703 (2012). (10.1029/2011JB008703) / J. Geophys. Res. by CRJ Kilburn (2012)
  27. Turcotte, D. L., Newman, W. I. & Shcherbakov, R. Micro and macroscopic models of rock fracture. Geophys. J. Int. 152, 718–728 (2003). (10.1046/j.1365-246X.2003.01884.x) / Geophys. J. Int. by DL Turcotte (2003)
  28. Campanella, R. G. & Vaid, Y. P. Triaxial and Plane Strain Creep Rupture of an Undisturbed Clay. Can. Geotech. J. 11(1), 1–10 (1974). (10.1139/t74-001) / Can. Geotech. J. by RG Campanella (1974)
  29. Lai, C. D., Murthy, D. N. & Xie, M. Weibull distributions and their applications. Springer Handbook of Engineering Statistics A (eds Pham, H. ) Ch. 3, 63–78. (Springer-Verlag London, 2006). (10.1007/978-1-84628-288-1_3)
Dates
Type When
Created 9 years, 2 months ago (June 16, 2016, 5:48 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 12:21 a.m.)
Indexed 2 weeks, 1 day ago (Aug. 12, 2025, 5:36 p.m.)
Issued 9 years, 2 months ago (June 16, 2016)
Published 9 years, 2 months ago (June 16, 2016)
Published Online 9 years, 2 months ago (June 16, 2016)
Funders 0

None

@article{Hao_2016, title={A relation to predict the failure of materials and potential application to volcanic eruptions and landslides}, volume={6}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep27877}, DOI={10.1038/srep27877}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Hao, Shengwang and Liu, Chao and Lu, Chunsheng and Elsworth, Derek}, year={2016}, month=jun }