Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractIce recrystallization is the main contributor to cell damage and death during the cryopreservation of cells and tissues. Over the past five years, many small carbohydrate-based molecules were identified as ice recrystallization inhibitors and several were shown to reduce cryoinjury during the cryopreservation of red blood cells (RBCs) and hematopoietic stems cells (HSCs). Unfortunately, clear structure-activity relationships have not been identified impeding the rational design of future compounds possessing ice recrystallization inhibition (IRI) activity. A set of 124 previously synthesized compounds with known IRI activities were used to calibrate 3D-QSAR classification models using GRid INdependent Descriptors (GRIND) derived from DFT level quantum mechanical calculations. Partial least squares (PLS) model was calibrated with 70% of the data set which successfully identified 80% of the IRI active compounds with a precision of 0.8. This model exhibited good performance in screening the remaining 30% of the data set with 70% of active additives successfully recovered with a precision of ~0.7 and specificity of 0.8. The model was further applied to screen a new library of aryl-alditol molecules which were then experimentally synthesized and tested with a success rate of 82%. Presented is the first computer-aided high-throughput experimental screening for novel IRI active compounds.

Bibliography

Briard, J. G., Fernandez, M., De Luna, P., Woo, Tom. K., & Ben, R. N. (2016). QSAR Accelerated Discovery of Potent Ice Recrystallization Inhibitors. Scientific Reports, 6(1).

Authors 5
  1. Jennie G. Briard (first)
  2. Michael Fernandez (additional)
  3. Phil De Luna (additional)
  4. Tom. K. Woo (additional)
  5. Robert N. Ben (additional)
References 35 Referenced 19
  1. Baust, J. M. Molecular mechanisms of cellular demise associated with cryopreservation failure. Cell Preserv. Technol. 1, 17–31 (2002). (10.1089/15383440260073266) / Cell Preserv. Technol. by JM Baust (2002)
  2. Mazur, P. Life in the Frozen State, (eds Fuller, B. J., Lane, N. & Benson, E. E. ), Ch. 1, 3–65 (CRC Press, 2004). (10.1201/9780203647073.ch1)
  3. Hunt, C. J. Cryopreservation of Human Stem Cells for Clinical Application: A Review. Transfus. Med. Hemotherapy 38, 107–123 (2011). (10.1159/000326623) / Transfus. Med. Hemotherapy by CJ Hunt (2011)
  4. Karlsson, J. O. M. & Toner, M. Long-term storage of tissues by cryopreservation: critical issues. Biomaterials 17, 243–256 (1996). (10.1016/0142-9612(96)85562-1) / Biomaterials by JOM Karlsson (1996)
  5. Mazur, P. Freezing of living cells: mechanisms and implications. Am. J. Physiol. Cell Physiol. 247, C125–C142 (1984). (10.1152/ajpcell.1984.247.3.C125) / Am. J. Physiol. Cell Physiol. by P Mazur (1984)
  6. Sasnoor, L. M., Kale, V. P. & Limaye, L. S. Supplementation of conventional freezing medium with a combination of catalase and trehalose results in better protection of surface molecules and functionality of hematopoietic cells. J Hematother Stem Cell Res 12, 553–564 (2003). (10.1089/152581603322448268) / J Hematother Stem Cell Res by LM Sasnoor (2003)
  7. Katkov II, Katkova, N., Critser, J. K. & Mazur, P. Mouse spermatozoa in high concentrations of glycerol: chemical toxicity vs osmotic shock at normal and reduced oxygen concentrations. Cryobiology 37, 325–338 (1998). (10.1006/cryo.1998.2128) / Cryobiology by Katkov II (1998)
  8. Hernandez, L. A. & Granger, N. Role of antioxidants in organ preservation and transplantation. Crit Care Med 16, 543–549 (1988). (10.1097/00003246-198805000-00015) / Crit Care Med by LA Hernandez (1988)
  9. Eltzschig, H. K. & Collard, C. D. Vascular ischaemia and reperfusion injury. Br. Med. Bull. 70, 71–86 (2004). (10.1093/bmb/ldh025) / Br. Med. Bull. by HK Eltzschig (2004)
  10. Sakai, A. & Otsuka, K. Survival of Plant Tissue at Super-Low Temperatures V. An Electron Microscope Study of Ice in Cortical Cells Cooled Rapidly. Plant Physiol. 42, 1680–1694 (1967). (10.1104/pp.42.12.1680) / Plant Physiol. by A Sakai (1967)
  11. Shimada, K. & Asahina, E. Visualization of intracellular ice crystals formed in very rapidly frozen cells at −27 °C. Cryobiology 12, 209–218 (1975). (10.1016/0011-2240(75)90019-X) / Cryobiology by K Shimada (1975)
  12. Farrant, J., Walter, C. A., Lee, H. & McGann, L. E. Use of two-step cooling procedures to examine factors influencing cell survival following freezing and thawing. Cryobiology 14, 273–286 (1977). (10.1016/0011-2240(77)90176-6) / Cryobiology by J Farrant (1977)
  13. Lovelock, J. E. & Bishop, M. W. Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature 183, 1394–1395 (1959). (10.1038/1831394a0) / Nature by JE Lovelock (1959)
  14. Wu, L. K. et al. Carbohydrate-mediated inhibition of ice recrystallization in cryopreserved human umbilical cord blood. Carbohydr. Res. 346, 86–93 (2011). (10.1016/j.carres.2010.10.016) / Carbohydr. Res. by LK Wu (2011)
  15. Chaytor, J. L. et al. Inhibiting ice recrystallization and optimization of cell viability after cryopreservation. Glycobiology 22, 123–133 (2012). (10.1093/glycob/cwr115) / Glycobiology by JL Chaytor (2012)
  16. Capicciotti, C. J. et al. Small Molecule Ice Recrystallization Inhibitors Enable Freezing of Human Red Blood Cells with Reduced Glycerol Concentrations. Sci. Rep. 5, doi: 10.1038/srep09692 (2015). (10.1038/srep09692)
  17. Tam, R. Y., Ferreira, S. S., Czechura, P., Chaytor, J. L. & Ben, R. N. Hydration Index-A Better Parameter for Explaining Small Molecule Hydration in Inhibition of Ice Recrystallization. J. Am. Chem. Soc. 130, 17494–17501 (2008). (10.1021/ja806284x) / J. Am. Chem. Soc. by RY Tam (2008)
  18. Balcerzak, A. K., Ferreira, S. S., Trant, J. F. & Ben, R. N. Structurally diverse disaccharide analogs of antifreeze glycoproteins and their ability to inhibit ice recrystallization. Bioorganic Med. Chem. Lett. 22, 1719–1721 (2012). (10.1016/j.bmcl.2011.12.097) / Bioorganic Med. Chem. Lett by AK Balcerzak (2012)
  19. Capicciotti, C. J. et al. Potent inhibition of ice recrystallization by low molecular weight carbohydrate-based surfactants and hydrogelators. Chem. Sci. 3, 1408–1416 (2012). (10.1039/c2sc00885h) / Chem. Sci by CJ Capicciotti (2012)
  20. Balcerzak, A. K., Febbraro, M. & Ben, R. N. The importance of hydrophobic moieties in ice recrystallization inhibitors. RSC Adv. 3, 3232–3236 (2013). (10.1039/c3ra23220d) / RSC Adv by AK Balcerzak (2013)
  21. Trant, J. F., Biggs, R. A., Capicciotti, C. J. & Ben, R. N. Developing highly active small molecule ice recrystallization inhibitors based upon C-linked antifreeze glycoprotein analogues. RSC Adv. 3, 26005–26009 (2013). (10.1039/c3ra43835j) / RSC Adv by JF Trant (2013)
  22. Knight, C. A., Hallett, J. & DeVries, A. L. Solute effects on ice recrystallization: An assessment technique. Cryobiology 25, 55–60 (1988). (10.1016/0011-2240(88)90020-X) / Cryobiology by CA Knight (1988)
  23. Galema, S. A., Engberts, J. B. F. N., Hoeiland, H. & Foerland, G. M. Informative thermodynamic properties of the effect of stereochemistry on carbohydrate hydration. J. Phys. Chem. 97, 6885–6889 (1993). (10.1021/j100128a023) / J. Phys. Chem. by SA Galema (1993)
  24. Galema, S. A., Howard, E., Engberts, J. B. F. N. & Grigera, J. R. The effect of stereochemistry upon carbohydrate hydration. A molecular dynamics simulation of β-d-galactopyranose and (α, β)-d-talopyranose. Carbohydr. Res. 265, 215–225 (1994). (10.1016/0008-6215(94)00241-X) / Carbohydr. Res. by SA Galema (1994)
  25. Kim, K., Greco, G. & Novellino, E. 3D QSAR in Drug Design Vol. 3 (eds Kubinyi, H., Folkers, G. & Martin, Y. ) Ch. 16, 257–315 (Springer, Netherlands, 1998). / Drug Design by K Kim (1998)
  26. Jackman, J. et al. Assessing antifreeze activity of AFGP 8 using domain recognition software. Biochem. Biophys. Res. Commun. 354, 340–344 (2007). (10.1016/j.bbrc.2006.12.225) / Biochem. Biophys. Res. Commun. by J Jackman (2007)
  27. Wavfunction Inc. [Spartan’14]. Retrieved from https://www.wavefun.com (2015).
  28. Halgren, T. A. Merck molecular force field. I. Basis, form, scope, parameterization and performance of MMFF94. J. Comput. Chem. 17, 490–519 (1996). (10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P) / J. Comput. Chem. by TA Halgren (1996)
  29. Pastor, M., Cruciani, G., McLay, I., Pickett, S. & Clementi, S. GRid-INdependent descriptors (GRIND): a novel class of alignment-independent three-dimensional molecular descriptors. J Med Chem 43, 3233–3243 (2000). (10.1021/jm000941m) / J Med Chem by M Pastor (2000)
  30. Bentley, J. Behavior of Electron Density Functions in Molecular Interactions. J. Phys. Chem. A 102, 6043–6051 (1998). (10.1021/jp981760n) / J. Phys. Chem. A by J Bentley (1998)
  31. Frisch, M. J. et al. Gaussian Inc. [Gaussian 03]. Gaussian. Wallingford, CT. (2004).
  32. Czechura, P., Tam, R. Y., Dimitrijevic, E., Murphy, A. V. & Ben, R. N. The Importance of Hydration for Inhibiting Ice Recrystallization with C-Linked Antifreeze Glycoproteins. J. Am. Chem. Soc. 130, 2928–2929 (2008). (10.1021/ja7103262) / J. Am. Chem. Soc. by P Czechura (2008)
  33. Geladi, P. & Kowalski, B. R. Partial least-squares regression: a tutorial. Anal. Chim. Acta 185, 1–17 (1986). (10.1016/0003-2670(86)80028-9) / Anal. Chim. Acta by P Geladi (1986)
  34. Holland, J. H. Adaptation in Natural and Artificial Systems. (University of Michigan Press, 1975).
  35. Subramanian, G. & Kitchen, D. B. Computational models to predict blood–brain barrier permeation and CNS activity. J. Comput. Aided. Mol. Des. 17, 643–664 (2003). (10.1023/B:JCAM.0000017372.32162.37) / J. Comput. Aided. Mol. Des. by G Subramanian (2003)
Dates
Type When
Created 9 years, 3 months ago (May 24, 2016, 1:17 p.m.)
Deposited 2 years, 7 months ago (Jan. 4, 2023, 9:39 a.m.)
Indexed 11 months, 2 weeks ago (Sept. 15, 2024, 9:16 a.m.)
Issued 9 years, 3 months ago (May 24, 2016)
Published 9 years, 3 months ago (May 24, 2016)
Published Online 9 years, 3 months ago (May 24, 2016)
Funders 0

None

@article{Briard_2016, title={QSAR Accelerated Discovery of Potent Ice Recrystallization Inhibitors}, volume={6}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep26403}, DOI={10.1038/srep26403}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Briard, Jennie G. and Fernandez, Michael and De Luna, Phil and Woo, Tom. K. and Ben, Robert N.}, year={2016}, month=may }