Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractThe search for chiral magnetic textures in systems lacking spatial inversion symmetry has attracted a massive amount of interest in the recent years with the real space observation of novel exotic magnetic phases such as skyrmions lattices, but also domain walls and spin spirals with a defined chirality. The electrical control of these textures offers thrilling perspectives in terms of fast and robust ultrahigh density data manipulation. A powerful ingredient commonly used to stabilize chiral magnetic states is the so-called Dzyaloshinskii-Moriya interaction (DMI) arising from spin-orbit coupling in inversion asymmetric magnets. Such a large antisymmetric exchange has been obtained at interfaces between heavy metals and transition metal ferromagnets, resulting in spin spirals and nanoskyrmion lattices. Here, using relativistic first-principles calculations, we demonstrate that the magnitude and sign of DMI can be entirely controlled by tuning the oxygen coverage of the magnetic film, therefore enabling the smart design of chiral magnetism in ultra-thin films. We anticipate that these results extend to other electronegative ions and suggest the possibility of electrical tuning of exotic magnetic phases.

Bibliography

Belabbes, A., Bihlmayer, G., Blügel, S., & Manchon, A. (2016). Oxygen-enabled control of Dzyaloshinskii-Moriya Interaction in ultra-thin magnetic films. Scientific Reports, 6(1).

Authors 4
  1. Abderrezak Belabbes (first)
  2. Gustav Bihlmayer (additional)
  3. Stefan Blügel (additional)
  4. Aurélien Manchon (additional)
References 50 Referenced 80
  1. Velev, J. P., Jaswal, S. S. & Tsymbal, E. Y. Multi-ferroic and magnetoelectric materials and interfaces. Phil. Trans. R. Soc. A 369, 3069 (2011). (10.1098/rsta.2010.0344) / Phil. Trans. R. Soc. A by JP Velev (2011)
  2. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103 (2012). (10.1038/nmat3223) / Nat. Mater. by HY Hwang (2012)
  3. Mühlbauer, S. et al. Skyrmion Lattice in a Chiral Magnet. Science 323, 915 (2009). (10.1126/science.1166767) / Science by S Mühlbauer (2009)
  4. Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901 (2010). (10.1038/nature09124) / Nature by XZ Yu (2010)
  5. Dzyaloshinskii, I. E. A thermodynamic theory of weak ferromagnetism of antiferromagnetics. Sov. Phys. JETP 5, 1259 (1957). / Sov. Phys. JETP by IE Dzyaloshinskii (1957)
  6. Moriya, T. Anisotropic Superexchange Interaction and Weak Ferromagnetism. Phys. Rev. 120, 91 (1960). (10.1103/PhysRev.120.91) / Phys. Rev. by T Moriya (1960)
  7. Fert, A. & Levy, M. Role of Anisotropic Exchange Interactions in Determining the Properties of Spin-Glasses. Phys. Rev. Lett. 44, 1538 (1980). (10.1103/PhysRevLett.44.1538) / Phys. Rev. Lett. by A Fert (1980)
  8. Bogdanov, A. N. & Rößler, U. K. Chiral Symmetry Breaking in Magnetic Thin Films and Multilayers. Phys. Rev. Lett. 87, 037203 (2001). (10.1103/PhysRevLett.87.037203) / Phys. Rev. Lett. by AN Bogdanov (2001)
  9. Bogdanov, A. & Hubert, A. Thermodynamically stable magnetic vortex states in magnetic crystals. J. Magn. Magn. Mater. 138, 255 (1994). (10.1016/0304-8853(94)90046-9) / J. Magn. Magn. Mater. by A Bogdanov (1994)
  10. Rößler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 422, 797 (2006). (10.1038/nature05056) / Nature by UK Rößler (2006)
  11. Bode, M. et al. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447, 190 (2007). (10.1038/nature05802) / Nature by M Bode (2007)
  12. Ferriani, P. et al. Atomic-Scale Spin Spiral with a Unique Rotational Sense: Mn Monolayer on W(001). Phys. Rev. Lett. 101, 027201 (2008). (10.1103/PhysRevLett.101.027201) / Phys. Rev. Lett. by P Ferriani (2008)
  13. Santos, B. et al. Structure and magnetism of ultra-thin chromium layers on W(110). New J. Phys. 10, 013005 (2008). (10.1088/1367-2630/10/1/013005) / New J. Phys. by B Santos (2008)
  14. Zimmermann, B., Heide, M., Bihlmayer, G. & Blügel, S. First-principles analysis of a homochiral cycloidal magnetic structure in a monolayer Cr on W(110). Phys. Rev. B 90, 115427 (2014). (10.1103/PhysRevB.90.115427) / Phys. Rev. B by B Zimmermann (2014)
  15. Menzel, M. et al. Information Transfer by Vector Spin Chirality in Finite Magnetic Chains. Phys. Rev. Lett. 108, 197204 (2012). (10.1103/PhysRevLett.108.197204) / Phys. Rev. Lett. by M Menzel (2012)
  16. Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713 (2011). (10.1038/nphys2045) / Nat. Phys. by S Heinze (2011)
  17. Romming, N. et al. Writing and Deleting Single Magnetic Skyrmions. Science 314, 636 (2013). (10.1126/science.1240573) / Science by N Romming (2013)
  18. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189 (2011). (10.1038/nature10309) / Nature by IM Miron (2011)
  19. Liu, L. et al. Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum. Science 336, 555 (2012). (10.1126/science.1218197) / Science by L Liu (2012)
  20. Manchon, A. & Zhang, S. Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Phys. Rev. B 78, 212405 (2008). (10.1103/PhysRevB.78.212405) / Phys. Rev. B by A Manchon (2008)
  21. Garate, I. & MacDonald, A. H. Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Phys. Rev. B 80, 134403 (2009). (10.1103/PhysRevB.80.134403) / Phys. Rev. B by I Garate (2009)
  22. Haney, P. M., Lee, H.-W., Lee, K.-J., Manchon, A. & Stiles, M. D. Current-induced torques and interfacial spin-orbit coupling. Phys. Rev. B 88, 214417 (2013). (10.1103/PhysRevB.88.214417) / Phys. Rev. B by PM Haney (2013)
  23. Freimuth, F., Blügel, S. & Mokrousov, Y. Spin-orbit torques in Co/Pt(111) and Mn/W(001) magnetic bilayers from first principles. Phys. Rev. B 90, 174423 (2014). (10.1103/PhysRevB.90.174423) / Phys. Rev. B by F Freimuth (2014)
  24. Freimuth, F., Blügel, S. & Mokrousov, Y. Direct and inverse spin-orbit torques. Phys. Rev. B 92, 064415 (2015). (10.1103/PhysRevB.92.064415) / Phys. Rev. B by F Freimuth (2015)
  25. Heide, M., Bihlmayer, G. & Blügel, S. Dzyaloshinskii-Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W(110). Phys. Rev. B 78, 140403 (2008). (10.1103/PhysRevB.78.140403) / Phys. Rev. B by M Heide (2008)
  26. Thiaville, A., Rohart, S., Jué, E., Cros, V. & Fert, A. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100, 57002 (2012). (10.1209/0295-5075/100/57002) / Europhys. Lett. by A Thiaville (2012)
  27. Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611 (2013). (10.1038/nmat3675) / Nat. Mater. by S Emori (2013)
  28. Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. Chiral spin torque at magnetic domain walls. Nat. Nanotechnol. 8, 527 (2013). (10.1038/nnano.2013.102) / Nat. Nanotechnol. by K-S Ryu (2013)
  29. Chen, G. et al. Novel Chiral Magnetic Domain Wall Structure in Fe/Ni/Cu(001) Films. Phys. Rev. Lett. 110, 177204 (2013). (10.1103/PhysRevLett.110.177204) / Phys. Rev. Lett. by G Chen (2013)
  30. Chen, G. et al. Tailoring the chirality of magnetic domain walls by interface engineering. Nat. Commun. 4, 2671 (2013). (10.1038/ncomms3671) / Nat. Commun. by G Chen (2013)
  31. Tetienne, J.-P. et al. The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry. Nat. Commun. 6, 6733 (2015). (10.1038/ncomms7733) / Nat. Commun. by J-P Tetienne (2015)
  32. Hrabec, A. et al. Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films. Phys. Rev. B 90, 020402(R) (2014). (10.1103/PhysRevB.90.020402) / Phys. Rev. B by A Hrabec (2014)
  33. Je, S.-G. et al. Asymmetric magnetic domain-wall motion by the Dzyaloshinskii-Moriya interaction. Phys. Rev. B 88, 214401 (2013). (10.1103/PhysRevB.88.214401) / Phys. Rev. B by S-G Je (2013)
  34. Pizzini, S. et al. Chirality-Induced Asymmetric Magnetic Nucleation in Pt/Co/AlOx Ultrathin Microstructures. Phys. Rev. Lett. 113, 047203 (2014). (10.1103/PhysRevLett.113.047203) / Phys. Rev. Lett. by S Pizzini (2014)
  35. Cho, J. et al. Thickness dependence of the interfacial Dzyaloshinskii-Moriya interaction in inversion symmetry broken systems, Nat. Comm. 6, 7635 (2015). / Comm. by J Cho (2015)
  36. Torrejon, J. et al. Interface control of the magnetic chirality in CoFeB/MgO heterostructures with heavy-metal underlayers. Nat. Commun. 5, 4655 (2014). (10.1038/ncomms5655) / Nat. Commun. by J Torrejon (2014)
  37. Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotech. http://dx.doi.org/10.1038/nnano.2015.313 (2016). (10.1038/nnano.2015.313)
  38. Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotech. http://dx.doi.org/10.1038/nnano.2015.315 (2016). (10.1038/nnano.2015.315)
  39. Hsu, P. J. et al. Electric field driven switching of individual magnetic skyrmions. arXiv:1601.02935v1.
  40. Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981). (10.1103/PhysRevB.23.5048) / Phys. Rev. B by JP Perdew (1981)
  41. Wimmer, E., Krakauer, H., Weinert, M. & Freeman, A. J. Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule. Phys. Rev. B 24, 864 (1981). (10.1103/PhysRevB.24.864) / Phys. Rev. B by E Wimmer (1981)
  42. FLEUR Project. Available at: http://www.flapw.de.
  43. Kurz, P., Förster, F., Nordström, L., Bihlmayer, G. & Blügel, S. Ab initio treatment of noncollinear magnets with the full-potential linearized augmented plane wave method. Phys. Rev. B 69, 024415 (2004). (10.1103/PhysRevB.69.024415) / Phys. Rev. B by P Kurz (2004)
  44. Heide, M., Bihlmayer, G. & Blügel, S. Describing Dzyaloshinskii-Moriya spirals from first principles. Phys. B. Cond. Matt. 404, 2678 (2009). (10.1016/j.physb.2009.06.070) / Phys. B. Cond. Matt. by M Heide (2009)
  45. Máca, F., Kudrnovský, J., Drchal, V. & Redinger, J. Influence of oxygen and hydrogen adsorption on the magnetic structure of an ultrathin iron film on an Ir(001) surface. Phys. Rev. B 88, 045423 (2013). (10.1103/PhysRevB.88.045423) / Phys. Rev. B by F Máca (2013)
  46. Dupé, B., Hoffmann, M., Paillard, C. & Heinze, S. Tailoring magnetic skyrmions in ultra-thin transition metal films. Nat. Commun. 5, 4030 (2014). (10.1038/ncomms5030) / Nat. Commun. by B Dupé (2014)
  47. Kashid, V. et al. Dzyaloshinskii-Moriya interaction and chiral magnetism in 3d–5d zigzag chains: Tight-binding model and ab initio calculations. Phys. Rev. B 90, 054412 (2014). (10.1103/PhysRevB.90.054412) / Phys. Rev. B by V Kashid (2014)
  48. Bornemann, S. et al. Trends in the magnetic properties of Fe, Co, and Ni clusters and monolayers on Ir(111), Pt(111), and Au(111). Phys. Rev. B 86, 104436 (2012). (10.1103/PhysRevB.86.104436) / Phys. Rev. B by S Bornemann (2012)
  49. Krupin, O. et al. Rashba effect at magnetic metal surfaces. Phys. Rev. B 71, 201403(R) (2005). (10.1103/PhysRevB.71.201403) / Phys. Rev. B by O Krupin (2005)
  50. Zhang, H., Soon, A., Delley, B. & Stampfl, C. Stability, structure, and electronic properties of chemisorbed oxygen and thin surface oxides on Ir(111). Phys. Rev. B 78, 045436 (2008). (10.1103/PhysRevB.78.045436) / Phys. Rev. B by H Zhang (2008)
Dates
Type When
Created 9 years, 4 months ago (April 22, 2016, 5:42 a.m.)
Deposited 2 years, 7 months ago (Jan. 4, 2023, 11:08 p.m.)
Indexed 4 days ago (Aug. 23, 2025, 9:34 p.m.)
Issued 9 years, 4 months ago (April 22, 2016)
Published 9 years, 4 months ago (April 22, 2016)
Published Online 9 years, 4 months ago (April 22, 2016)
Funders 0

None

@article{Belabbes_2016, title={Oxygen-enabled control of Dzyaloshinskii-Moriya Interaction in ultra-thin magnetic films}, volume={6}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep24634}, DOI={10.1038/srep24634}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Belabbes, Abderrezak and Bihlmayer, Gustav and Blügel, Stefan and Manchon, Aurélien}, year={2016}, month=apr }