Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractA novel “photovoltaics (PV) + electrolyzer” concept is presented using a simple, small and completely stand-alone non-biased device for solar-driven overall water splitting. Three or four spherical-shaped p-n junction silicon balls were successfully connected in series, named “SPHELAR.” SPHELAR possessed small projected areas of 0.20 (3PVs) and 0.26 cm2(4PVs) and exhibited working voltages sufficient for water electrolysis. Impacts of the configuration on the PV module performance were carefully analyzed, revealing that a drastic increase in the photocurrent (≈20%) was attained by the effective utilization of a reflective sheet. Separate investigations on the electrocatalyst performance showed that non-noble metal based materials with reasonably small sizes (<0.80 cm2) exhibited substantial currents at the PV working voltage. By combining the observations of the PV characteristics, light management and electrocatalyst performance, solar-driven overall water splitting was readily achieved, reaching solar-to-hydrogen efficiencies of 7.4% (3PVs) and 6.4% (4PVs).

Bibliography

Kageshima, Y., Shinagawa, T., Kuwata, T., Nakata, J., Minegishi, T., Takanabe, K., & Domen, K. (2016). A miniature solar device for overall water splitting consisting of series-connected spherical silicon solar cells. Scientific Reports, 6(1).

Authors 7
  1. Yosuke Kageshima (first)
  2. Tatsuya Shinagawa (additional)
  3. Takaaki Kuwata (additional)
  4. Josuke Nakata (additional)
  5. Tsutomu Minegishi (additional)
  6. Kazuhiro Takanabe (additional)
  7. Kazunari Domen (additional)
References 61 Referenced 27
  1. Lewis, N. S. & Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. 103, 15729–15735 (2006). (10.1073/pnas.0603395103) / Proc. Natl. Acad. Sci. by NS Lewis (2006)
  2. Sivula, K. Toward economically feasible direct solar-to-fuel energy conversion. J. Phys. Chem. Lett. 6, 975–976 (2015). (10.1021/acs.jpclett.5b00406) / J. Phys. Chem. Lett. by K Sivula (2015)
  3. Parida, B., Iniyan, S. & Goic, R. A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 15, 1625–1636 (2011). (10.1016/j.rser.2010.11.032) / Renew. Sustain. Energy Rev. by B Parida (2011)
  4. Hisatomi, T., Kubota, J. & Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520–7535 (2014). (10.1039/C3CS60378D) / Chem. Soc. Rev. by T Hisatomi (2014)
  5. Luo, J. et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345, 1593–1596 (2014). (10.1126/science.1258307) / Science by J Luo (2014)
  6. Cox, C. R., Lee, J. Z., Nocera, D. G. & Buonassisi, T. Ten-percent solar-to-fuel conversion with nonprecious materials. Proc. Natl. Acad. Sci. 111, 14057–14061 (2014). (10.1073/pnas.1414290111) / Proc. Natl. Acad. Sci. by CR Cox (2014)
  7. Jacobsson, T. J., Fjällström, V., Edoff, M. & Edvinsson, T. Sustainable solar hydrogen production: from photoelectrochemical cells to PV-electrolyzers and back again. Energy Environ. Sci. 7, 2056–2070 (2014). (10.1039/C4EE00754A) / Energy Environ. Sci. by TJ Jacobsson (2014)
  8. Ager III, J. W., Shaner, M., Walczak, K., Sharp, I. D. & Ardo, S. Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ. Sci. 8, 2811–2824 (2015). (10.1039/C5EE00457H) / Energy Environ. Sci. by JW Ager III (2015)
  9. Verlage, E. et al. A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III–V light absorbers protected by amorphous TiO2 films. Energy Environ. Sci. 8, 3166–3172 (2015). (10.1039/C5EE01786F) / Energy Environ. Sci. by E Verlage (2015)
  10. May, M. M., Lewerenz, H., Lackner, D., Dimroth, F. & Hannappel, T. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat. Commun. 6, 8286 (2015). (10.1038/ncomms9286) / Nat. Commun. by MM May (2015)
  11. Bergmann, R. B. Crystalline Si thin-film solar cells: a review. Appl. Phys. A 69, 187–194 (1999). (10.1007/s003390050989) / Appl. Phys. A by RB Bergmann (1999)
  12. Jackson, P. et al. New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Prog. Photovoltaics Res. Appl. 19, 894–897 (2011). (10.1002/pip.1078) / Prog. Photovoltaics Res. Appl. by P Jackson (2011)
  13. Gupta, A. & Compaan, A. D. All-sputtered 14% CdS/CdTe thin-film solar cell with ZnO:Al transparent conducting oxide. Appl. Phys. Lett. 85, 684–686 (2015). (10.1063/1.1775289) / Appl. Phys. Lett. by A Gupta (2015)
  14. Koenigsmann, C., Ripolles, T. S., Brennan, B. J., Negre, C. F. A. & Koepf, M. Substitution of a hydroxamic acid anchor into the MK-2 dye for enhanced photovoltaic performance and water stability in a DSSC. Phys. Chem. Chem. Phys. 16, 16629–16641 (2014). (10.1039/C4CP02405B) / Phys. Chem. Chem. Phys. by C Koenigsmann (2014)
  15. Chen, W. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944–948 (2015). (10.1126/science.aad1015) / Science by W Chen (2015)
  16. Gibson, T. L. & Kelly, N. A. Optimization of solar powered hydrogen production using photovoltaic electrolysis devices. Int. J. Hydrogen Energy 33, 5931–5940 (2008). (10.1016/j.ijhydene.2008.05.106) / Int. J. Hydrogen Energy by TL Gibson (2008)
  17. Artuso, P., Zuccari, F., Dell’Era, A. & Orecchini, F. PV-Electrolyzer Plant: Models and Optimization Procedure. J. Sol. Energy Eng. 132, 031016 (2010). (10.1115/1.4001673) / J. Sol. Energy Eng. by P Artuso (2010)
  18. Yang, Z., Zhang, G. & Lin, B. Performance evaluation and optimum analysis of a photovoltaic-driven electrolyzer system for hydrogen production. Int. J. Hydrogen Energy 40, 3170–3179 (2015). (10.1016/j.ijhydene.2015.01.028) / Int. J. Hydrogen Energy by Z Yang (2015)
  19. Maeda, K. et al. Photocatalyst releasing hydrogen from water. Nature 440, 295 (2006). (10.1038/440295a) / Nature by K Maeda (2006)
  20. Suzuki, T. M. et al. Z-scheme water splitting under visible light irradiation over powdered metal-complex/semiconductor hybrid photocatalysts mediated by reduced graphene oxide. J. Mater. Chem. A 3, 13283–13290 (2015). (10.1039/C5TA02045J) / J. Mater. Chem. A by TM Suzuki (2015)
  21. Peter, L. M. Photoelectrochemical Water Splitting. A Status Assessment. Electroanalysis 27, 864–871 (2015). (10.1002/elan.201400587) / Electroanalysis by LM Peter (2015)
  22. Reece, S. Y. et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334, 645–648 (2011). (10.1126/science.1209816) / Science by SY Reece (2011)
  23. Winkler, M., Cox, C., Nocera, D. & Buonassisi, T. Modeling integrated photovoltaic–electrochemical devices using steady-state equivalent circuits. Proc. Natl. Acad. Sci. 110, E1076–E1082 (2013). (10.1073/pnas.1301532110) / Proc. Natl. Acad. Sci. by M Winkler (2013)
  24. Walczak, K. et al. Modeling, simulation and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system. ChemSusChem 8, 544–551 (2015). (10.1002/cssc.201402896) / ChemSusChem by K Walczak (2015)
  25. Nocera, D. G. The Artificial Leaf. Acc. Chem. Res. 45, 767–776 (2012). (10.1021/ar2003013) / Acc. Chem. Res. by DG Nocera (2012)
  26. Joya, K. S. & De Groot, H. J. M. Artificial leaf goes simpler and more efficient for solar fuel generation. ChemSusChem 7, 73–76 (2014). (10.1002/cssc.201300981) / ChemSusChem by KS Joya (2014)
  27. Modestino, M. A. et al. Robust production of purified H2 in a stable, self-regulating and continuously operating solar fuel generator. Energy Environ. Sci. 7, 297–301 (2014). (10.1039/C3EE43214A) / Energy Environ. Sci. by MA Modestino (2014)
  28. H. Hashemi, S. M., Modestino, M. A. & Psaltis, D. A membrane-less electrolyzer for hydrogen production across the pH scale. Energy Environ. Sci. 8, 2003–2009 (2015). (10.1039/C5EE00083A) / Energy Environ. Sci. by SM H. Hashemi (2015)
  29. Zeng, K. & Zhang, D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36, 307–326 (2010). (10.1016/j.pecs.2009.11.002) / Prog. Energy Combust. Sci. by K Zeng (2010)
  30. Zhao, Y., Hernandez-pagan, E. A., Vargas-barbosa, N. M., Dysart, J. L. & Mallouk, T. E. A high yield synthesis of ligand-free Iridium oxide nanoparticles with high electrocatalytic activity. J. Phys. Chem. Lett. 2, 402–406 (2011). (10.1021/jz200051c) / J. Phys. Chem. Lett. by Y Zhao (2011)
  31. Lee, Y., Suntivich, J., May, K. J., Perry, E. E. & Shao-horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline Solutions. J. Phys. Chem. Lett. 3, 399–404 (2012). (10.1021/jz2016507) / J. Phys. Chem. Lett. by Y Lee (2012)
  32. Licht, S. et al. Efficient solar water splitting, exemplified by RuO2-Catalyzed AlGaAs/Si photoelectrolysis. J. Phys. Chem. B 104, 8920–8924 (2000). (10.1021/jp002083b) / J. Phys. Chem. B by S Licht (2000)
  33. Urbain, F. et al. Influence of the operating temperature on the performance of silicon based photoelectrochemical devices for water splitting. Mater. Sci. Semicond. Process. 42, 142–146 (2015). (10.1016/j.mssp.2015.08.045) / Mater. Sci. Semicond. Process. by F Urbain (2015)
  34. Domínguez-Crespo, M. A., Ramírez-Meneses, E., Torres-Huerta, A. M., Garibay-Febles, V. & Philippot, K. Kinetics of hydrogen evolution reaction on stabilized Ni, Pt and Ni–Pt nanoparticles obtained by an organometallic approach. Int. J. Hydrogen Energy 37, 4798–4811 (2011). (10.1016/j.ijhydene.2011.12.109) / Int. J. Hydrogen Energy by MA Domínguez-Crespo (2011)
  35. Van Drunen, J. et al. Electrochemically Active Nickel Foams as Support Materials for Nanoscopic Platinum Electrocatalysts. ACS Appl. Mater. Interfaces 6, 12046–12061(2014). (10.1021/am501097t) / ACS Appl. Mater. Interfaces by J Van Drunen (2014)
  36. McCrory, C. C. L., Jung, S., Peters, J. C. & Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977–16986 (2013). (10.1021/ja407115p) / J. Am. Chem. Soc. by CCL McCrory (2013)
  37. Wang, H. et al. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 6, 7261 (2015). (10.1038/ncomms8261) / Nat. Commun. by H Wang (2015)
  38. Qi, J. et al. Porous nickel–iron oxide as a highly efficient electrocatalyst for oxygen evolution reaction. Adv. Sci. 2, 1500199 (2015). (10.1002/advs.201500199) / Adv. Sci. by J Qi (2015)
  39. Hutchings, G. S. et al. In situ Formation of cobalt oxide nanocubanes as efficient oxygen evolution catalysts. J. Am. Chem. Soc. 137, 4223–4229 (2015). (10.1021/jacs.5b01006) / J. Am. Chem. Soc. by GS Hutchings (2015)
  40. Navarro-Flores, E., Chong, Z. & Omanovic, S. Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium. J. Mol. Catal. A Chem. 226, 179–197 (2005). (10.1016/j.molcata.2004.10.029) / J. Mol. Catal. A Chem. by E Navarro-Flores (2005)
  41. Xiao, P. et al. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 7, 2624–2629 (2014). (10.1039/C4EE00957F) / Energy Environ. Sci. by P Xiao (2014)
  42. Popczun, E. J., Read, C. G., Roske, C. W., Lewis, N. S. & Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem. Int. Ed. 53, 5427–5430 (2014). (10.1002/anie.201402646) / Angew. Chem. Int. Ed. by EJ Popczun (2014)
  43. McCrory, C. C. L. et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015). (10.1021/ja510442p) / J. Am. Chem. Soc. by CCL McCrory (2015)
  44. McKee, W. Development of the spherical silicon solar cell. IEEE Trans. Components, Hybrids, Manuf. Technol. 5, 336–341 (1982). (10.1109/TCHMT.1982.1136008) / IEEE Trans. Components, Hybrids, Manuf. Technol. by W McKee (1982)
  45. Minemot, T. et al. Spherical silicon solar cells fabricated by high speed dropping method. Proceedings of 31st IEEE Photovoltaic Specialists Conference, 963–966 (2005). (10.1109/PVSC.2005.1488292)
  46. Taira, K. & Nakata, J. Silicon cells: catching rays. Nat. Photo. 4, 602–603 (2010). (10.1038/nphoton.2010.193) / Nat. Photo. by K Taira (2010)
  47. Minemoto, T. et al. Fabrication of spherical silicon solar cells with semi-light-concentration system. Jpn. J. Appl. Phys. 44, 4820–4824 (2005). (10.1143/JJAP.44.4820) / Jpn. J. Appl. Phys. by T Minemoto (2005)
  48. Minemoto, T., Murozono, M., Yamaguchi, Y., Takakura, H. & Hamakawa, Y. Design strategy and development of spherical silicon solar cell with semi-concentration reflector system. Sol. Energy Mater. Sol. Cells 90, 3009–3013 (2006). (10.1016/j.solmat.2006.06.016) / Sol. Energy Mater. Sol. Cells by T Minemoto (2006)
  49. Conway, B. & Bai, L. H2 evolution kinetics at high activity Ni-Mo-Cd electrocoated cathodes and its relation to potential dependence of sorption of H. Int. J. Hydrogen Energy 11, 533–540 (1986). (10.1016/0360-3199(86)90020-0) / Int. J. Hydrogen Energy by B Conway (1986)
  50. Kirk, J. T. O. Attenuation of solar radiation in scattering–absorbing waters: a simplified procedure for its calculation. Appl. Opt. 23, 3737–3739 (1984). (10.1364/AO.23.003737) / Appl. Opt. by JTO Kirk (1984)
  51. Kou, L., Labrie, D. & Chylek, P. Refractive indices of water and ice in the 0.65- to 2.5-μm spectral range. Appl. Opt. 32, 3531–3540 (1993). (10.1364/AO.32.003531) / Appl. Opt. by L Kou (1993)
  52. Pope, R. M. & Fry, E. S. Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl. Opt. 36, 8710–8723 (1997). (10.1364/AO.36.008710) / Appl. Opt. by RM Pope (1997)
  53. Cumming, J. B. Temperature dependence of light absorption by water. Nucl. Inst. Methods Phys. Res. A 713, 1–4 (2013). (10.1016/j.nima.2013.02.024) / Nucl. Inst. Methods Phys. Res. A by JB Cumming (2013)
  54. Lee, Z. et al. Hyperspectral absorption coefficient of “pure” seawater in the range of 350–550 nm inverted from remote sensing reflectance. Appl. Opt. 54, 546–558 (2015). (10.1364/AO.54.000546) / Appl. Opt. by Z Lee (2015)
  55. Edlén, B. The Refractive Index of Air. Metrologia 2, 71–80 (1966). (10.1088/0026-1394/2/2/002) / Metrologia by B Edlén (1966)
  56. Thormählen, I., Straub, J. & Grigull, U. Refractive index of water and its dependence on wavelength, temperature and density. J. Phys. Chem. Ref. Data. 14, 933–945 (1985). (10.1063/1.555743) / J. Phys. Chem. Ref. Data. by I Thormählen (1985)
  57. Shinagawa, T. & Takanabe, K. Electrolyte engineering toward efficient hydrogen production electrocatalysis with oxygen-crossover regulation under densely buffered near-neutral pH conditions. J. Phys. Chem. C 120, 1785–1794 (2016). (10.1021/acs.jpcc.5b12137) / J. Phys. Chem. C by T Shinagawa (2016)
  58. Bonke, S. A., Wiechen, M., Macfarlane, D. R. & Spiccia, L. Renewable fuels from concentrated solar power: towards practical artificial photosynthesis. Energy Environ. Sci. 8, 2791–2796 (2015). (10.1039/C5EE02214B) / Energy Environ. Sci. by SA Bonke (2015)
  59. Shinagawa, T. & K. Takanabe . Impact of solute concentration on the electrocatalytic conversion of dissolved gases in buffered solutions. J. Power Sources 287, 465−471 (2015). (10.1016/j.jpowsour.2015.04.091) / J. Power Sources by T Shinagawa (2015)
  60. Shinagawa, T. & K. Takanabe . Electrocatalytic hydrogen evolution under densely buffered neutral pH conditions. J. Phys. Chem. C 199, 20453−20458 (2015). (10.1021/acs.jpcc.5b05295) / J. Phys. Chem. C by T Shinagawa (2015)
  61. Nurlaela, E., Shinagawa, T., Qureshi, M., Dhawale, D. S. & Takanabe, K. Temperature Dependence of Electrocatalytic and Photocatalytic Oxygen Evolution Reaction Rates Using NiFe Oxide. ACS Catal. 6, 1713−1722 (2016). (10.1021/acscatal.5b02804) / ACS Catal. by E Nurlaela (2016)
Dates
Type When
Created 9 years, 4 months ago (April 18, 2016, 5:24 a.m.)
Deposited 2 months, 4 weeks ago (June 2, 2025, 3:57 p.m.)
Indexed 2 months, 4 weeks ago (June 3, 2025, 12:08 a.m.)
Issued 9 years, 4 months ago (April 18, 2016)
Published 9 years, 4 months ago (April 18, 2016)
Published Online 9 years, 4 months ago (April 18, 2016)
Funders 0

None

@article{Kageshima_2016, title={A miniature solar device for overall water splitting consisting of series-connected spherical silicon solar cells}, volume={6}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep24633}, DOI={10.1038/srep24633}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Kageshima, Yosuke and Shinagawa, Tatsuya and Kuwata, Takaaki and Nakata, Josuke and Minegishi, Tsutomu and Takanabe, Kazuhiro and Domen, Kazunari}, year={2016}, month=apr }