Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractMonolayer molybdenum diselenide (MoSe2), a member of the TMDCs family, is an appealing candidate for coupling to gold plasmonic nanostructures as it has smaller bandgap and higher electron mobility in comparison to frequently studied molybdenum disulfide (MoS2). The PL of MoSe2 occurs in the near-infrared spectral range where the emissive properties do not suffer from the enhanced dissipation in the gold due to inter-band transitions. Here, we study the interaction between monolayer MoSe2 and plasmonic dipolar antennas in resonance with the PL emission of MoSe2. By varying the thickness of the spacer between the MoSe2 layer and nanoantenna, we demonstrate manipulation of the PL intensity from nearly fourfold quenching to approximately threefold enhancement. Furthermore, we show that the coupled TMDC-nanoantenna system exhibits strong polarization-dependent PL, thus offering the possibility of polarization-based emission control. Our experimental results are supported by numerical simulations as well. To the best of our knowledge, this is the first study of Au-MoSe2 plasmonic hybrid structures realizing flexible PL manipulation.

Bibliography

Chen, H., Yang, J., Rusak, E., Straubel, J., Guo, R., Myint, Y. W., Pei, J., Decker, M., Staude, I., Rockstuhl, C., Lu, Y., Kivshar, Y. S., & Neshev, D. (2016). Manipulation of photoluminescence of two-dimensional MoSe2 by gold nanoantennas. Scientific Reports, 6(1).

Authors 13
  1. Haitao Chen (first)
  2. Jiong Yang (additional)
  3. Evgenia Rusak (additional)
  4. Jakob Straubel (additional)
  5. Rui Guo (additional)
  6. Ye Win Myint (additional)
  7. Jiajie Pei (additional)
  8. Manuel Decker (additional)
  9. Isabelle Staude (additional)
  10. Carsten Rockstuhl (additional)
  11. Yuerui Lu (additional)
  12. Yuri S. Kivshar (additional)
  13. Dragomir Neshev (additional)
References 39 Referenced 81
  1. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 2–5 (2010). (10.1103/PhysRevLett.105.136805) / Phys. Rev. Lett. by KF Mak (2010)
  2. Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2 . Nat. Nanotechnol. 8, 497–501 (2013). (10.1038/nnano.2013.100) / Nat. Nanotechnol. by O Lopez-Sanchez (2013)
  3. Xiao, D., Liu, G. B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 1–5 (2012). / Phys. Rev. Lett. by D Xiao (2012)
  4. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014). (10.1038/nphys2942) / Nat. Phys. by X Xu (2014)
  5. Mak, K. F. et al. Tightly bound trions in monolayer MoS2 . Nat. Mater. 12, 207–211 (2013). (10.1038/nmat3505) / Nat. Mater. by KF Mak (2013)
  6. Mouri, S., Miyauchi, Y. & Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 13, 5944–5948 (2013). (10.1021/nl403036h) / Nano Lett. by S Mouri (2013)
  7. Zhu, H. et al. Observation of piezoelectricity in free-standing monolayer MoS2 . Nat. Nanotechnol. 10, 151–155 (2014). (10.1038/nnano.2014.309) / Nat. Nanotechnol. by H Zhu (2014)
  8. Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2 . Nat. Nanotechnol. 8, 634–638 (2013). (10.1038/nnano.2013.151) / Nat. Nanotechnol. by AM Jones (2013)
  9. Lei, S. et al. An Atomically Layered InSe Avalanche Photodetector. Nano Lett. 15, 3048–3055 (2015). (10.1021/acs.nanolett.5b00016) / Nano Lett. by S Lei (2015)
  10. Wu, S. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015). (10.1038/nature14290) / Nature by S Wu (2015)
  11. Lin, J., Li, H., Zhang, H. & Chen, W. Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor. Appl. Phys. Lett. 102, 2013–2016 (2013). / Appl. Phys. Lett. by J Lin (2013)
  12. Sigle, D. O. et al. Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities. ACS Nano 9, 825–830 (2015). (10.1021/nn5064198) / ACS Nano by DO Sigle (2015)
  13. Goodfellow, K. M., Beams, R., Chakraborty, C., Novotny, L. & Vamivakas, A. N. Integrated nanophotonics based on nanowire plasmons and atomically thin material. Optica. 1, 149–152 (2014). (10.1364/OPTICA.1.000149) / Optica. by KM Goodfellow (2014)
  14. Sobhani, A. et al. Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells. Appl. Phys. Lett. 104, 031112 (2014). (10.1063/1.4862745) / Appl. Phys. Lett. by A Sobhani (2014)
  15. Najmaei, S., Mlayah, A., Arbouet, A. & Girard, C. Plasmonic Pumping of Excitonic Photoluminescence in Hybrid. ACS Nano 8, 12682–12689 (2014). (10.1021/nn5056942) / ACS Nano by S Najmaei (2014)
  16. Lee, B. et al. Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoSe2 integrated with plasmonic nanoantenna array. Nano Lett. 15, 3646–3653 (2015). (10.1021/acs.nanolett.5b01563) / Nano Lett. by B Lee (2015)
  17. Butun, S., Tongay, S. & Aydin, K. Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays. Nano Lett. 15, 2700–2704 (2015). (10.1021/acs.nanolett.5b00407) / Nano Lett. by S Butun (2015)
  18. Akselrod, G. M. et al. Leveraging nanocavity harmonics for control of optical processes in 2d semiconductors. Nano Lett. 15, 3578–3584 (2015). (10.1021/acs.nanolett.5b01062) / Nano Lett. by GM Akselrod (2015)
  19. Kern, J. et al. Nanoantenna-enhanced light-matter interaction in atomically thin WS2 . ACS Photonics 2, 1260–1265 (2015). (10.1021/acsphotonics.5b00123) / ACS Photonics by J Kern (2015)
  20. Bhanu, U., Islam, M. R., Tetard, L. & Khondaker, S. I. Photoluminescence quenching in gold -MoS2 hybrid nanoflakes. Sci. Rep. 4, 5575 (2014). (10.1038/srep05575) / Sci. Rep. by U Bhanu (2014)
  21. Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 3–6 (2006). (10.1103/PhysRevLett.96.113002) / Phys. Rev. Lett. by P Anger (2006)
  22. Tongay, S. et al. Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2 . Nano Lett. 12, 5576–5580 (2012). (10.1021/nl302584w) / Nano Lett. by S Tongay (2012)
  23. Kumar, N. et al. Exciton-exciton annihilation in MoSe2 monolayers. Phys. Rev. B 89, 125427 (2014). (10.1103/PhysRevB.89.125427) / Phys. Rev. B by N Kumar (2014)
  24. Zhang, Y. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2 . Nat. Nanotechnol. 9, 111–115 (2014). (10.1038/nnano.2013.277) / Nat. Nanotechnol. by Y Zhang (2014)
  25. Kang, J., Tongay, S., Zhou, J., Li, J. & Wu, J. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102, 012111 (2013). (10.1063/1.4774090) / Appl. Phys. Lett. by J Kang (2013)
  26. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 37–38 (1946). (10.1103/PhysRev.69.37) / Phys. Rev. by EM Purcell (1946)
  27. Thomas, M., Greffet, J.-J., Carminati, R. & Arias-Gonzalez, J. Single-molecule spontaneous emission close to absorbing nanostructures. Appl. Phys. Lett. 85, 3863–3865 (2004). (10.1063/1.1812592) / Appl. Phys. Lett. by M Thomas (2004)
  28. Carminati, R., Greffet, J.-J., Henkel, C. & Vigoureux, J. Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle. Opt. Commun. 261, 368–375 (2006). (10.1016/j.optcom.2005.12.009) / Opt. Commun. by R Carminati (2006)
  29. Mertens, H., Koenderink, A. & Polman, A. Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved gersten and nitzan model. Phys. Rev. B 76, 115123 (2007). (10.1103/PhysRevB.76.115123) / Phys. Rev. B by H Mertens (2007)
  30. Alù, A. & Engheta, N. Hertzian plasmonic nanodimer as an efficient optical nanoantenna. Phys. Rev. B 78, 195111 (2008). (10.1103/PhysRevB.78.195111) / Phys. Rev. B by A Alù (2008)
  31. Colas des Francs, G. et al. Fluorescence relaxation in the near–field of a mesoscopic metallic particle: distance dependence and role of plasmon modes. Opt. Express 16, 17654–17666 (2008). (10.1364/OE.16.017654) / Opt. Express by G Colas des Francs (2008)
  32. Devilez, A., Stout, B. & Bonod, N. Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission. ACS Nano 4, 3390–3396 (2010). (10.1021/nn100348d) / ACS Nano by A Devilez (2010)
  33. Liaw, J.-W., Chen, C.-S. & Chen, J.-H. Enhancement or quenching effect of metallic nanodimer on spontaneous emission. J. Quant. Spectrosc. Radiat. Transfer 111, 454–465 (2010). (10.1016/j.jqsrt.2009.09.009) / J. Quant. Spectrosc. Radiat. Transfer by J-W Liaw (2010)
  34. Tonndorf, P. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2 and WSe2 . Opt. Express 21, 4908–4916 (2013). 1208.5864. (10.1364/OE.21.004908) / Opt. Express by P Tonndorf (2013)
  35. Schuller, J. A. et al. Orientation of luminescent excitons in layered nanomaterials. Nat. Nanotechnol. 8, 271–276 (2013). (10.1038/nnano.2013.20) / Nat. Nanotechnol. by JA Schuller (2013)
  36. Bharadwaj, P., Deutsch, B. & Novotny, L. Optical antennas. Adv. Opt. Photonics 1, 438–483 (2009). (10.1364/AOP.1.000438) / Adv. Opt. Photonics by P Bharadwaj (2009)
  37. Pelton, M. Modified spontaneous emission in nanophotonic structures. Nat. Photonics 9, 427–435 (2015). (10.1038/nphoton.2015.103) / Nat. Photonics by M Pelton (2015)
  38. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972). (10.1103/PhysRevB.6.4370) / Phys. Rev. B by PB Johnson (1972)
  39. Laux, S. et al. Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation. Thin Solid Films 335, 1–5 (1998). (10.1016/S0040-6090(98)00861-X) / Thin Solid Films by S Laux (1998)
Dates
Type When
Created 9 years, 6 months ago (Feb. 29, 2016, 7:02 a.m.)
Deposited 2 years, 7 months ago (Jan. 4, 2023, 8:17 a.m.)
Indexed 1 month ago (July 28, 2025, 5:48 p.m.)
Issued 9 years, 6 months ago (Feb. 29, 2016)
Published 9 years, 6 months ago (Feb. 29, 2016)
Published Online 9 years, 6 months ago (Feb. 29, 2016)
Funders 0

None

@article{Chen_2016, title={Manipulation of photoluminescence of two-dimensional MoSe2 by gold nanoantennas}, volume={6}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep22296}, DOI={10.1038/srep22296}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Chen, Haitao and Yang, Jiong and Rusak, Evgenia and Straubel, Jakob and Guo, Rui and Myint, Ye Win and Pei, Jiajie and Decker, Manuel and Staude, Isabelle and Rockstuhl, Carsten and Lu, Yuerui and Kivshar, Yuri S. and Neshev, Dragomir}, year={2016}, month=feb }