Abstract
AbstractA new ether-based electrolyte to match lithium metal electrode is prepared by introducing 1, 4-dioxane as co-solvent into lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane solution. Under the synergetic effect of solvents and salt, this simple liquid electrolyte presents stable Li cycling with dendrite-free Li deposition even at relatively high current rate, high coulombic efficiency of ca. 98%, and good anodic stability up to ~4.87 V vs Li RE. Its excellent performance will open up a new possibility for high energy-density rechargeable Li metal battery system.
References
39
Referenced
180
-
Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976).
(
10.1126/science.192.4244.1126
) / Science by MS Whittingham (1976) -
Aurbach, D. et al. Attempts to improve the behavior of Li electrodes in rechargeable lithium batteries. J. Electrochem. Soc. 149, A1267–A1277 (2002).
(
10.1149/1.1502684
) / J. Electrochem. Soc. by D Aurbach (2002) -
Li, W. et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat Commun 6, 7436–7444 (2015).
(
10.1038/ncomms8436
) / Nat Commun by W Li (2015) -
Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).
(
10.1038/nmat3191
) / Nat. Mater. by PG Bruce (2012) -
Tarascon, J.-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).
(
10.1038/35104644
) / Nature by J-M Tarascon (2001) -
Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).
(
10.1039/C3EE40795K
) / Energy Environ. Sci. by W Xu (2014) -
Cheng, X.-B. et al. Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium–sulfur batteries. ACS Nano 9, 6373–6382 (2015).
(
10.1021/acsnano.5b01990
) / ACS Nano by X-B Cheng (2015) -
Croce, F., Appetecchi, G., Persi, L. & Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998).
(
10.1038/28818
) / Nature by F Croce (1998) -
Gadjourova, Z., Andreev, Y. G., Tunstall, D. P. & Bruce, P. G. Ionic conductivity in crystalline polymer electrolytes. Nature 412, 520–523 (2001).
(
10.1038/35087538
) / Nature by Z Gadjourova (2001) -
Zhang, Y. et al. Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure. Nano Lett 14, 6889–6896 (2014).
(
10.1021/nl5039117
) / Nano Lett by Y Zhang (2014) -
Ding, F. et al. Effects of carbonate solvents and lithium salts on morphology and coulombic efficiency of lithium electrode. J. Electrochem. Soc. 160, A1894–A1901 (2013).
(
10.1149/2.100310jes
) / J. Electrochem. Soc. by F Ding (2013) -
Matsuda, Y. & Sekiya, M. Effect of organic additives in electrolyte solutions on lithium electrode behavior. J. Power Sources 81, 759–761 (1999).
(
10.1016/S0378-7753(99)00239-6
) / J. Power Sources by Y Matsuda (1999) -
Matsuda, Y., Takemitsu, T., Tanigawa, T. & Fukushima, T. Effect of organic additives in electrolyte solutions on behavior of lithium metal anode. J. Power Sources 97, 589–591 (2001).
(
10.1016/S0378-7753(01)00698-X
) / J. Power Sources by Y Matsuda (2001) -
Matsuda, Y., Ishikawa, M., Yoshitake, S. & Morita, M. Characterization of the lithium-organic electrolyte interface containing inorganic and organic additives by in situ techniques. J. Power Sources 54, 301–305 (1995).
(
10.1016/0378-7753(94)02088-K
) / J. Power Sources by Y Matsuda (1995) -
Ishikawa, M. & Machino, S. -i. & Morita, M. Electrochemical control of a Li metal anode interface: improvement of Li cyclability by inorganic additives compatible with electrolytes. J. Electroanal. Chem. 473, 279–284 (1999).
(
10.1016/S0022-0728(99)00170-9
) / J. Electroanal. Chem. by M Ishikawa (1999) -
Ritchie, A. Recent developments and future prospects for lithium rechargeable batteries. J. Power Sources 96, 1–4 (2001).
(
10.1016/S0378-7753(00)00673-X
) / J. Power Sources by A Ritchie (2001) -
Aurbach, D., Weissman, I., Zaban, A. & Chusid, O. Correlation between surface chemistry, morphology, cycling efficiency and interfacial properties of Li electrodes in solutions containing different Li salts. Electrochim. Acta 39, 51–71 (1994).
(
10.1016/0013-4686(94)85010-0
) / Electrochim. Acta by D Aurbach (1994) -
Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).
(
10.1038/nmat4041
) / Nat. Mater. by Y Lu (2014) -
Osaka, T., Momma, T., Tajima, T. & Matsumoto, Y. Enhancement of Lithium Anode Cyclability in Propylene Carbonate Electrolyte by CO2 Addition and Its Protective Effect Against H2O Impurity. J. Electrochem. Soc. 142, 1057–1060 (1995).
(
10.1149/1.2044131
) / J. Electrochem. Soc. by T Osaka (1995) -
Stassen, I. & Hambitzer, G. Metallic lithium batteries for high power applications. J. Power Sources 105, 145–150 (2002).
(
10.1016/S0378-7753(01)00933-8
) / J. Power Sources by I Stassen (2002) -
Lu, Y., Tu, Z., Shu, J. & Archer, L. A. Stable lithium electrodeposition in salt-reinforced electrolytes. J. Power Sources 279, 413–418 (2015).
(
10.1016/j.jpowsour.2015.01.030
) / J. Power Sources by Y Lu (2015) -
Khurana, R., Schaefer, J. L., Archer, L. A. & Coates, G. W. Suppression of lithium dendrite growth using cross-linked polyethylene/poly (ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014).
(
10.1021/ja502133j
) / J. Am. Chem. Soc. by R Khurana (2014) -
Mizuno, F., Nakanishi, S., Kotani, Y., Yokoishi, S. & Iba, H. Rechargeable Li-air batteries with carbonate-based liquid electrolytes. Electrochemistry 78, 403–405 (2010).
(
10.5796/electrochemistry.78.403
) / Electrochemistry by F Mizuno (2010) -
Xu, W. et al. Investigation on the charging process of Li2O2-based air electrodes in Li–O2 batteries with organic carbonate electrolytes. J. Power Sources 196, 3894–3899 (2011).
(
10.1016/j.jpowsour.2010.12.065
) / J. Power Sources by W Xu (2011) -
Park, M. S. et al. A highly reversible lithium metal anode. Sci. Rep. 4, 3815–3823 (2014).
(
10.1038/srep03815
) / Sci. Rep by MS Park (2014) -
Miao, R. et al. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. J. Power Sources 271, 291–297 (2014).
(
10.1016/j.jpowsour.2014.08.011
) / J. Power Sources by R Miao (2014) -
Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat Commun 6, 6362–6371 (2015).
(
10.1038/ncomms7362
) / Nat Commun by J Qian (2015) -
Younesi, R., Veith, G. M., Johansson, P., Edström, K. & Vegge, T. Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S. Energy Environ. Sci. 8, 1905–1922 (2015).
(
10.1039/C5EE01215E
) / Energy Environ. Sci. by R Younesi (2015) -
Huang, J.-Q. et al. Permselective Graphene Oxide Membrane for Highly Stable and Anti-Self-Discharge Lithium–Sulfur Batteries. ACS Nano 9, 3002–3011 (2015).
(
10.1021/nn507178a
) / ACS Nano by J-Q Huang (2015) -
Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).
(
10.1021/cr030203g
) / Chem. Rev. by K Xu (2004) - Pan, Q., Smith, D. M., Qi, H., Wang, S. & Li, C. Y. Hybrid Electrolytes with Controlled Network Structures for Lithium Metal Batteries. Adv Mater 27, 5905–6001 (2015). / Adv Mater by Q Pan (2015)
-
Best, A. S., Bhatt, A. I. & Hollenkamp, A. F. Ionic Liquids with the Bis(fluorosulfonyl)imide Anion: Electrochemical Properties and Applications in Battery Technology. J. Electrochem. Soc. 157, A903–A911 (2010).
(
10.1149/1.3429886
) / J. Electrochem. Soc. by AS Best (2010) -
Kim, H. et al. In Situ Formation of Protective Coatings on Sulfur Cathodes in Lithium Batteries with LiFSI-Based Organic Electrolytes. Adv. Energy Mater. 5, 1401792–1401799 (2015).
(
10.1002/aenm.201401792
) / Adv. Energy Mater. by H Kim (2015) -
Suo, L., Hu, Y.-S., Li, H., Armand, M. & Chen, L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4, 1481–1489 (2013).
(
10.1038/ncomms2513
) / Nat Commun by L Suo (2013) -
Markevich, E. et al. The effect of a solid electrolyte interphase on the mechanism of operation of lithium–sulfur batteries. J. Maer. Chem. A 3, 19873–19883 (2015).
(
10.1039/C5TA04613K
) / J. Maer. Chem. A by E Markevich (2015) -
Budi, A. et al. Study of the initial stage of solid electrolyte interphase formation upon chemical reaction of lithium metal and n-methyl-n-propyl-pyrrolidinium-bis (fluorosulfonyl) imide. J. Phys. Chem. C 116, 19789–19797 (2012).
(
10.1021/jp304581g
) / J. Phys. Chem. C by A Budi (2012) -
Li, L. et al. Transport and electrochemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents. J. Electrochem. Soc. 158, A74–A82 (2011).
(
10.1149/1.3514705
) / J. Electrochem. Soc. by L Li (2011) -
Chazalviel, J.-N. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phy. Rev. A 42, 7355 (1990).
(
10.1103/PhysRevA.42.7355
) / Phy. Rev. A by J-N Chazalviel (1990) -
Wei, W. et al. CNT enhanced sulfur composite cathode material for high rate lithium battery. Electrochem. Commun. 13, 399–402 (2011).
(
10.1016/j.elecom.2011.02.001
) / Electrochem. Commun. by W Wei (2011)
Dates
Type | When |
---|---|
Created | 9 years, 6 months ago (Feb. 16, 2016, 7:54 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 4, 2023, 10:39 p.m.) |
Indexed | 1 day, 10 hours ago (Aug. 27, 2025, 12:20 p.m.) |
Issued | 9 years, 6 months ago (Feb. 16, 2016) |
Published | 9 years, 6 months ago (Feb. 16, 2016) |
Published Online | 9 years, 6 months ago (Feb. 16, 2016) |
@article{Miao_2016, title={A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries}, volume={6}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep21771}, DOI={10.1038/srep21771}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Miao, Rongrong and Yang, Jun and Xu, Zhixin and Wang, Jiulin and Nuli, Yanna and Sun, Limin}, year={2016}, month=feb }