Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractIn this paper, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 104, dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In + Nb) co-doped rutile TiO2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries and that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles.

Bibliography

Song, Y., Wang, X., Sui, Y., Liu, Z., Zhang, Y., Zhan, H., Song, B., Liu, Z., Lv, Z., Tao, L., & Tang, J. (2016). Origin of colossal dielectric permittivity of rutile Ti0.9In0.05Nb0.05O2: single crystal and polycrystalline. Scientific Reports, 6(1).

Authors 11
  1. Yongli Song (first)
  2. Xianjie Wang (additional)
  3. Yu Sui (additional)
  4. Ziyi Liu (additional)
  5. Yu Zhang (additional)
  6. Hongsheng Zhan (additional)
  7. Bingqian Song (additional)
  8. Zhiguo Liu (additional)
  9. Zhe Lv (additional)
  10. Lei Tao (additional)
  11. Jinke Tang (additional)
References 30 Referenced 94
  1. Krohns, S. et al. Theroute to resource-efficient novel materials. Nat. Mater. 10, 899–901 (2011). (10.1038/nmat3180) / Nat. Mater. by S Krohns (2011)
  2. Buscaglia, M. T. et al. High dielectric constant and frozen macroscopic polarization in dense nanocrystalline BaTiO3 ceramics. Phys. Rev. B. 73, 064114 (2006). (10.1103/PhysRevB.73.064114) / Phys. Rev. B. by MT Buscaglia (2006)
  3. Homes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S. & Ramirez, A. P. Optical response of high- dielectric-constant perovskite-related oxide. Science. 293, 673–676 (2001). (10.1126/science.1061655) / Science. by CC Homes (2001)
  4. Sinclair, D. C., Adams, T. B., Morrison, F. D. & West, A. R. CaCu3Ti4 O12: One-step internal barrier layer capacitor. Appl. Phys. Lett. 80, 2153–2155 (2002). (10.1063/1.1463211) / Appl. Phys. Lett. by DC Sinclair (2002)
  5. Wu, J. B., Nan, C. W. & Lin, Y. H. & Yuan Deng. Giant Dielectric Permittivity Observed in Li and Ti Doped NiO. Phys. Rev. Lett. 89, 217601 (2002). (10.1103/PhysRevLett.89.217601) / Phys. Rev. Lett. by JB Wu (2002)
  6. Liu, X., Fan, H. Q., Shi, J. & Li, Q. Origin of anomalous giant dielectric performance in novel perovskite: Bi0.5−xLaxNa0.5−xLixTi1−yMyO3 (M=Mg2+, Ga3+). Sci. Rep 5, 12699 (2015). (10.1038/srep12699) / Sci. Rep by X Liu (2015)
  7. Zheng, H., Weng, W. J., Han, G. R. & Du, P. V. Colossal Permittivity and Variable-Range- Hopping Conduction of Polarons in Ni0.5Zn0.5Fe2O4 Ceramic. J. Phys. Chem. C 117, 12966–12972 (2013). (10.1021/jp402320b) / J. Phys. Chem. C by H Zheng (2013)
  8. Li, X. L. et al. High pressure treated ZnO ceramics towards giant dielectric constants. J. Mater. Chem. A 2, 16740–16745 (2014). (10.1039/C4TA03434A) / J. Mater. Chem. A by XL Li (2014)
  9. Sagdeo, A. et al. Large dielectric permittivity and possible correlation between magnetic and dielectric properties in bulk BaFeO3−δ . Appl. Phys. Lett 105, 042906 (2014). (10.1063/1.4892064) / Appl. Phys. Lett by A Sagdeo (2014)
  10. Zheng, T. et al. Potassium–sodium niobate lead-free ceramics: modified strain as well as piezoelectricity. J. Mater. Chem. A 3, 1868–1874 (2015). (10.1039/C4TA05423G) / J. Mater. Chem. A by T Zheng (2015)
  11. Guillemet-Fritsch, S. et al. Colossal permittivity in ultrafine grain size BaTiO3-x and Ba0.95La0.05TiO3-x materials. Adv. Mater. 20, 551–555 (2008). (10.1002/adma.200700245) / Adv. Mater. by S Guillemet-Fritsch (2008)
  12. Hu, W. B. et al. Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater 12, 821–827 (2013). (10.1038/nmat3691) / Nat. Mater by WB Hu (2013)
  13. Cheng, X. J., Li, Z. W. & Wu, J. G. Colossal permittivity in ceramics of TiO2 Co-doped with niobium and trivalent cation. J. Mater. Chem. A 3, 5805–5810 (2015). (10.1039/C5TA00141B) / J. Mater. Chem. A by XJ Cheng (2015)
  14. Hu,W. B. et al. Colossal Dielectric Permittivity in (Nb+Al) Codoped Rutile TiO2 Ceramics: Compositional Gradient and Local Structure. Chem. Mater. 27, 4934–4942 (2015). (10.1021/acs.chemmater.5b01351) / Chem. Mater. by WB Hu (2015)
  15. Gai, Z. G. et al. A colossal dielectric constant of an amorphous TiO2:(Nb, In) film with low loss fabrication at room temperature. J. Mater. Chem. C 2, 6790–6795 (2014). (10.1039/C4TC00500G) / J. Mater. Chem. C by ZG Gai (2014)
  16. Han, H. et al. Quasi-intrinsic colossal permittivity in Nb and In co-doped rutile TiO2 nanoceramics synthesized through a oxalate chemical-solution route combined with spark plasma sintering. Phys. Chem. Chem. Phys. 17, 16864–16875 (2015). (10.1039/C5CP02653A) / Phys. Chem. Chem. Phys. by H Han (2015)
  17. Zhao, X. G. et al. Origin of colossal permittivity in (In1/2Nb1/2) TiO2 via broadband dielectric spectroscopy. Phys. Chem. Chem. Phys. 17, 23132—23139 (2015). (10.1039/C5CP02741A) / Phys. Chem. Chem. Phys. by XG Zhao (2015)
  18. Li, J. L. et al. Microstructure and dielectric properties of (Nb+In) co-doped rutile TiO2 ceramics. J. Appl. Phys 116, 074105 (2014). (10.1063/1.4893316) / J. Appl. Phys by JL Li (2014)
  19. Li, J. L. et al. Evidences of grain boundary capacitance effect on the colossal dielectric permittivity in (Nb+In) co-doped TiO2 ceramics. Sci. Rep, 5, 8295 (2015). (10.1038/srep08295) / Sci. Rep by JL Li (2015)
  20. Li, J. L., Li, F., Xu, Z., Zhuang, Y. Y. & Zhang, S. J. Nonlinear I–V behavior in colossal permittivity ceramic: (Nb+In) co-doped rutile TiO2 . Ceramics International 41. 798–803 (2015). (10.1016/j.ceramint.2015.03.156) / Ceramics International by JL Li (2015)
  21. Wang, X. J. et al. Origin of ferromagnetism in aluminum-doped TiO2 thin films: Theory and experiments. Appl. Phys. Lett 105, 262402 (2014). (10.1063/1.4905150) / Appl. Phys. Lett by XJ Wang (2014)
  22. Yang, J. Y. et al. d carrier induced intrinsic room temperature ferromagnetism in Nb:TiO2 film. Appl. Phys. Lett 100, 202409 (2012). (10.1063/1.4707378) / Appl. Phys. Lett by JY Yang (2012)
  23. Erdem, B. et al. XPS and FTIR Surface Characterization of TiO2 Particles Used in Polymer Encapsulation. Langmuir 17, 2664–2669 (2001). (10.1021/la0015213) / Langmuir by B Erdem (2001)
  24. Ramos-Moore, E., Ferrari, P., Diaz-Droguett, D. E., Lederman, D. & Evans, J. T. Raman and x-ray photoelectron spectroscopy study of ferroelectric switching in Pb(Nb,Zr,Ti)O3 thin films. J. Appl. Phys 111, 014108 (2012). (10.1063/1.3675479) / J. Appl. Phys by E Ramos-Moore (2012)
  25. Li, M. et al. Origin(s) of the apparent high permittivity in CaCu3Ti4O12 ceramics: clarification on the contributions from internal barrier layer capacitor and sample-electrode contact effects. J. Appl. Phys 106, 104106 (2009). (10.1063/1.3253743) / J. Appl. Phys by M Li (2009)
  26. Krohns, S., Lunkenheimer, P., Ebbinghaus, S. G. & Loidl, A. Broadband dielectric spectroscopy on single-crystalline and ceramic CaCu3Ti4O12 . Appl. Phys. Lett 91, 022910 (2007). (10.1063/1.2757098) / Appl. Phys. Lett by S Krohns (2007)
  27. Krohns, S., Lunkenheimer, P., Ebbinghaus, S. G. & Loidl, A. Colossal dielectric constants in single-crystalline and ceramic CaCu3Ti4O12 investigated by broadband dielectric spectroscopy. J. Appl. Phys 103, 084107 (2008). (10.1063/1.2902374) / J. Appl. Phys by S Krohns (2008)
  28. Shen, M. R., Ge, S. B. & Cao, W. W. Dielectric enhancement and Maxwell-Wagner effects in polycrystalline ferroelectric multilayered thin films. J. Phys. D: Appl. Phys 34, 2935–2938 (2001). (10.1088/0022-3727/34/19/301) / J. Phys. D: Appl. Phys by MR Shen (2001)
  29. Ren, S. Q. et al. Coexistence of electric field controlled ferromagnetism and resistive switching for TiO2 film at room temperature. Appl. Phys. Lett 107, 062404 (2015). (10.1063/1.4928537) / Appl. Phys. Lett by SQ Ren (2015)
  30. Morris, D., Dou, Y., Rebane, J., Mitchell, C. E. J. & Egdell, R. G. Photoemission and STM study of the electronic structure of Nb-doped TiO2 . Phys. Rev. B 61, 13445–13457 (2000). (10.1103/PhysRevB.61.13445) / Phys. Rev. B by D Morris (2000)
Dates
Type When
Created 9 years, 6 months ago (Feb. 12, 2016, 5:36 a.m.)
Deposited 2 years, 7 months ago (Jan. 4, 2023, 8:30 a.m.)
Indexed 11 months, 1 week ago (Sept. 19, 2024, 11:41 a.m.)
Issued 9 years, 6 months ago (Feb. 12, 2016)
Published 9 years, 6 months ago (Feb. 12, 2016)
Published Online 9 years, 6 months ago (Feb. 12, 2016)
Funders 0

None

@article{Song_2016, title={Origin of colossal dielectric permittivity of rutile Ti0.9In0.05Nb0.05O2: single crystal and polycrystalline}, volume={6}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep21478}, DOI={10.1038/srep21478}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Song, Yongli and Wang, Xianjie and Sui, Yu and Liu, Ziyi and Zhang, Yu and Zhan, Hongsheng and Song, Bingqian and Liu, Zhiguo and Lv, Zhe and Tao, Lei and Tang, Jinke}, year={2016}, month=feb }