Abstract
AbstractThe ability to efficiently design new and advanced dielectric polymers is hampered by the lack of sufficient, reliable data on wide polymer chemical spaces and the difficulty of generating such data given time and computational/experimental constraints. Here, we address the issue of accelerating polymer dielectrics design by extracting learning models from data generated by accurate state-of-the-art first principles computations for polymers occupying an important part of the chemical subspace. The polymers are ‘fingerprinted’ as simple, easily attainable numerical representations, which are mapped to the properties of interest using a machine learning algorithm to develop an on-demand property prediction model. Further, a genetic algorithm is utilised to optimise polymer constituent blocks in an evolutionary manner, thus directly leading to the design of polymers with given target properties. While this philosophy of learning to make instant predictions and design is demonstrated here for the example of polymer dielectrics, it is equally applicable to other classes of materials as well.
References
52
Referenced
314
-
Sharma, V. et al. Rational design of all organic polymer dielectrics. Nature Commun. 5, 4845 (2014).
(
10.1038/ncomms5845
) / Nature Commun. by V Sharma (2014) - Jain, A. et al. A high-throughput infrastructure for density functional theory calculations. Comp. Mat. Sc. 50, 22952310 (2011). / Comp. Mat. Sc. by A Jain (2011)
- Strasser, P. et al. High throughput experimental and theoretical predictive screening of materials A comparative study of search strategies for new fuel cell anode catalysts. J. Phys. Chem. B 40, 1101311021 (2003). / J. Phys. Chem. B by P Strasser (2003)
-
Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. & Norskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006).
(
10.1038/nmat1752
) / Nat. Mater. by J Greeley (2006) - Yu, L., Kokenyesi, R. S., Keszler, D. A. & Zunger, A. Inverse design of high absorption thin-film photovoltaic materials. Adv. En. Mat. 3, 4348 (2013). / Adv. En. Mat. by L Yu (2013)
-
Huan, T. D., Mannodi-Kanakkithodi, A. & Ramprasad, R. Accelerated materials property predictions and design using motif-based fingerprints. Phys. Rev. B 92, 014106 (2015).
(
10.1103/PhysRevB.92.014106
) / Phys. Rev. B by TD Huan (2015) -
Hautier, G., Fischer, C. C., Jain, A., Mueller, T. & Ceder, G. Finding natures missing ternary oxide compounds using machine learning and density functional theory. Chem. Mat. 22, 37623767 (2010).
(
10.1021/cm100795d
) / Chem. Mat. by G Hautier (2010) -
d’Avezac, M., Luo, J., Chanier, T. & Zunger, A. Genetic-algorithm discovery of a direct-gap and optically allowed superstructure from indirect-gap Si and Ge semiconductors. Phys. Rev. Lett. 108 027401 (2012).
(
10.1103/PhysRevLett.108.027401
) / Phys. Rev. Lett. by M d’Avezac (2012) -
Mller, K., Paloumpa, I., Henkel, K. & Schmeisser, D. A polymer high-k dielectric insulator for organic field-effect transistors. J. App. Phys 98, 056104 (2005).
(
10.1063/1.2032611
) / J. App. Phys by K Mller (2005) -
Ma, R. et al. Rational design and synthesis of polythioureas as capacitor dielectrics. J. Mater. Chem. A. 3, 14845 (2015).
(
10.1039/C5TA01252J
) / J. Mater. Chem. A. by R Ma (2015) -
Baldwin, A. F. et al. Poly(dimethyltin glutarate) as a prospective material for high dielectric applications. Adv. Mat. 27, 346351 (2015).
(
10.1002/adma.201404162
) / Adv. Mat. by AF Baldwin (2015) -
Baldwin, A. F. et al. Rational design of organotin polyesters. Macromolecules 48, 24222428 (2015).
(
10.1021/ma502424r
) / Macromolecules by AF Baldwin (2015) -
Pilania, G. et al. New group IV chemical motifs for improved dielectric permittivity of polyethylene. J. Chem. Inf. and Modeling 53, 879886 (2013).
(
10.1021/ci400033h
) / J. Chem. Inf. and Modeling by G Pilania (2013) -
Facchetti, A. Pi-conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mat. 23, 733758 (2011).
(
10.1021/cm102419z
) / Chem. Mat. by A Facchetti (2011) -
Chan, S.-H. et al. Synthesis, characterization and photovoltaic properties of novel semiconducting polymers with thiophenephenylenethiophene (TPT) as coplanar units. Macromolecules 41, 55195526 (2008).
(
10.1021/ma800494k
) / Macromolecules by S-H Chan (2008) - Ling, Q.-D. et al. Polymer electronic memories: Materials, devices and mechanisms. Prog. in Pol. Sc. 33, 917978 (2008). / Prog. in Pol. Sc. by Q-D Ling (2008)
-
Yan, H. et al. A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679–686 (2009).
(
10.1038/nature07727
) / Nature by H Yan (2009) - Dayan, P. The MIT Encyclopedia of the Cognitive Sciences (1999).
-
Mueller, T., Kusne, A. G. & Ramprasad, R. Machine Learning in Materials Science: Recent Progress and Emerging Applications Rev. Comput. Chem. (2015).
(
10.1002/9781119148739.ch4
) - Bishop, C. M. Pattern Recognition and Machine Learning Springer (2006).
- Rajan, K. Informatics for Materials Science and Engineering Elsevier (2013).
-
Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 521, 452459 (2015).
(
10.1038/nature14541
) / Nature by Z Ghahramani (2015) -
Schuett, K. T. et al. How to represent crystal structures for machine learning: Towards fast prediction of electronic properties. Phys. Rev. B 89, 205118 (2014).
(
10.1103/PhysRevB.89.205118
) / Phys. Rev. B by KT Schuett (2014) -
Faber, F., Lindmaa, A., Von Lilienfeld, O. A. & Armiento, R. Crystal structure representations for machine learning models of formation energies. Int. J. Quantum Chem. 115, 10941101 (2015).
(
10.1002/qua.24917
) / Int. J. Quantum Chem. by F Faber (2015) - Faber, F., Lindmaa, A., Von Lilienfeld, O. A. & Armiento, R. Machine learning energies of 2 M elpasolite (ABC2D6) crystals. http://arxiv.org/pdf/1508.05315.pdf (2015) (21/08/2015).
-
Jain, A., Castelli, I. E., Hautier, G., Bailey, D. H. & Jacobsen, K. W. Performance of genetic algorithms in search for water splitting perovskites. J. Mat. Sc. 48, 6519–6534 (2013).
(
10.1007/s10853-013-7448-9
) / J. Mat. Sc. by A Jain (2013) -
Dudiy, S. V. & Zunger, A. Searching for alloy configurations with target physical properties: Impurity design via a genetic algorithm inverse band structure approach. Phys. Rev. Lett. 97, 046401 (2006).
(
10.1103/PhysRevLett.97.046401
) / Phys. Rev. Lett. by SV Dudiy (2006) -
Goedecker, S. Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. J. Chem. Phys. 120, 9911–7 (2004).
(
10.1063/1.1724816
) / J. Chem. Phys. by S Goedecker (2004) -
Amsler, M. & Goedecker, S. Crystal structure prediction using the minima hopping method. J. Chem. Phys. 133, 224104 (2010).
(
10.1063/1.3512900
) / J. Chem. Phys. by M Amsler (2010) -
Wang, C. C., Pilania, G. & Ramprasad, R. Dielectric properties of carbon-, silicon- and germanium-based polymers: A first-principles study. Phys. Rev. B 87, 035103 (2013).
(
10.1103/PhysRevB.87.035103
) / Phys. Rev. B by CC Wang (2013) -
Mannodi-Kanakkithodi, A., Wang, C. C. & Ramprasad, R. Compounds based on Group 14 elements: building blocks for advanced insulator dielectrics design. J. Mat. Sc. 50, 801–807 (2015).
(
10.1007/s10853-014-8640-2
) / J. Mat. Sc. by A Mannodi-Kanakkithodi (2015) -
Pilania, G., Wang, C. C., Jiang, X., Rajasekaran, S. & Ramprasad, R. Accelerating materials property predictions using machine learning. Sci. Rep. 3, 2810 (2013).
(
10.1038/srep02810
) / Sci. Rep. by G Pilania (2013) - Miller, R. L. Crystallographic Data and Melting Points for Various Polymers John Wiley and Sons Inc. (2003).
-
Rupp, M., Tkatchenko, A., Muller, K. & von Lilienfeld, O. A. Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108, 058301 (2012).
(
10.1103/PhysRevLett.108.058301
) / Phys. Rev. Lett. by M Rupp (2012) -
Ghiringhelli, L. M., Vybiral, J., Levchenko, S. V., Draxl, C. & Scheffler, M. Big data of materials science: critical role of the descriptor. Phys. Rev. Lett. 114, 105503 (2015).
(
10.1103/PhysRevLett.114.105503
) / Phys. Rev. Lett. by LM Ghiringhelli (2015) -
Meredig, B. et al. Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys. Rev. B 89, 094104 (2014).
(
10.1103/PhysRevB.89.094104
) / Phys. Rev. B by B Meredig (2014) -
Botu, V. & Ramprasad, R. Adaptive machine learning framework to accelerate ab initio molecular dynamics. Int. J. Quantum Chem. 115, 10741083 (2015).
(
10.1002/qua.24836
) / Int. J. Quantum Chem. by V Botu (2015) -
Todeschini, R. & Consonni, V. Handbook of Molecular Descriptors, 2nd edition, Wiley (2009).
(
10.1007/978-1-4020-9783-6_3
) - Mannhold, R., Kubinyi, H. & Folkers, G. Methods and Principles in Medicinal Chemistry, 41, Wiley (2003).
-
Vu, K. et al. Understanding kernel ridge regression: Common behaviors from simple functions to density functionals. Int. J. Quantum Chem. 115, 1115–1128 (2015).
(
10.1002/qua.24939
) / Int. J. Quantum Chem. by K Vu (2015) -
Amsler, M., Botti, S., Marques, M. A. L. & Goedecker, S. Conducting Boron sheets formed by the reconstruction of the alpha-Boron (111) surface. Phys. Rev. Lett. 111, 136101 (2013).
(
10.1103/PhysRevLett.111.136101
) / Phys. Rev. Lett. by M Amsler (2013) -
Huan, T. D., Sharma, V., Rossetti, G. A. & Ramprasad, R. Pathways towards ferroelectricity in hafnia. Phys. Rev. B 90, 064111 (2014).
(
10.1103/PhysRevB.90.064111
) / Phys. Rev. B by TD Huan (2014) -
Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 136, B864 (1964).
(
10.1103/PhysRev.136.B864
) / Phys. Rev. B by P Hohenberg (1964) -
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).
(
10.1103/PhysRevB.47.558
) / Phys. Rev. B by G Kresse (1993) -
Klime, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Cond. Matt. 22, 022201 (2010).
(
10.1088/0953-8984/22/2/022201
) / J. Phys. Cond. Matt. by J Klime (2010) - Liu, C.-S., Pilania, G., Wang, C. C. & Ramprasad, R. How critical are the van der Waals interactions in polymer crystals? J. Phys. Chem. A 116, 93479352 (2012). / J. Phys. Chem. A by C-S Liu (2012)
-
Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
(
10.1103/PhysRevB.50.17953
) / Phys. Rev. B by PE Blochl (1994) -
Baroni, S., de Gironcoli, S. & Corso, A. D. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515 (2001).
(
10.1103/RevModPhys.73.515
) / Rev. Mod. Phys. by S Baroni (2001) -
Bernardini, F., Fiorentini, V. & Venderbilt, D. Polarization-based calculation of the dielectric tensor of polar crystals. Phys. Rev. Lett. 79, 3958 (1997).
(
10.1103/PhysRevLett.79.3958
) / Phys. Rev. Lett. by F Bernardini (1997) -
Zhao, X. & Vanderbilt, D. Phonons and lattice dielectric properties of zirconia. Phys. Rev. B 65, 075105 (2002).
(
10.1103/PhysRevB.65.075105
) / Phys. Rev. B by X Zhao (2002) -
Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003).
(
10.1063/1.1564060
) / J. Chem. Phys. by J Heyd (2003) -
Heyd, J., Peralta, J. E., Scuseria, G. E. & Martin, R. L. Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J. Chem. Phys. 123, 174101 (2005).
(
10.1063/1.2085170
) / J. Chem. Phys. by J Heyd (2005)
Dates
Type | When |
---|---|
Created | 9 years, 6 months ago (Feb. 15, 2016, 5:39 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 4, 2023, 8:26 a.m.) |
Indexed | 4 days, 5 hours ago (Aug. 19, 2025, 6:24 a.m.) |
Issued | 9 years, 6 months ago (Feb. 15, 2016) |
Published | 9 years, 6 months ago (Feb. 15, 2016) |
Published Online | 9 years, 6 months ago (Feb. 15, 2016) |
@article{Mannodi_Kanakkithodi_2016, title={Machine Learning Strategy for Accelerated Design of Polymer Dielectrics}, volume={6}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep20952}, DOI={10.1038/srep20952}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Mannodi-Kanakkithodi, Arun and Pilania, Ghanshyam and Huan, Tran Doan and Lookman, Turab and Ramprasad, Rampi}, year={2016}, month=feb }