Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractHere we demonstrate that by regulating the mobility of classic −EO− based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained by UV-induced (co)polymerization, which promotes an effective interlinking between the polyethylene oxide (PEO) chains plasticized by tetraglyme at various lithium salt concentrations. The polymer networks exhibit sterling mechanical robustness, high flexibility, homogeneous and highly amorphous characteristics. Ambient temperature ionic conductivity values exceeding 0.1 mS cm−1 are obtained, along with a wide electrochemical stability window (>5 V vs. Li/Li+), excellent lithium ion transference number (>0.6) as well as interfacial stability. Moreover, the efficacious resistance to lithium dendrite nucleation and growth postulates the implementation of these polymer electrolytes in next generation of all-solid Li-metal batteries working at ambient conditions.

Bibliography

Porcarelli, L., Gerbaldi, C., Bella, F., & Nair, J. R. (2016). Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries. Scientific Reports, 6(1).

Authors 4
  1. Luca Porcarelli (first)
  2. Claudio Gerbaldi (additional)
  3. Federico Bella (additional)
  4. Jijeesh Ravi Nair (additional)
References 69 Referenced 337
  1. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008). (10.1038/451652a) / Nature by M Armand (2008)
  2. Barghamadi, M. et al. Lithium-sulfur batteries-the solution is in the electrolyte, but is the electrolyte a solution? Energy Environ. Sci. 7, 3902–3920 (2014). (10.1039/C4EE02192D) / Energy Environ. Sci. by M Barghamadi (2014)
  3. Arora, P. et al. Battery Separators, Chem. Rev. 104, 4419–4462 (2004) (10.1021/cr020738u) / Chem. Rev. by P Arora (2004)
  4. Lee, H. et al. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 7, 3857–3886 (2014). (10.1039/C4EE01432D) / Energy Environ. Sci. by H Lee (2014)
  5. Jin, L. et al. An organic ionic plastic crystal electrolyte for rate capability and stability of ambient temperature lithium batteries. Energy Environ. Sci. 7, 3352–3361 (2014). (10.1039/C4EE01085J) / Energy Environ. Sci. by L Jin (2014)
  6. Stephan, A. M. Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 42, 21–42 (2006). (10.1016/j.eurpolymj.2005.09.017) / Eur. Polym. J. by AM Stephan (2006)
  7. Zhu, Y. et al. Composite of a nonwoven fabric with poly(vinylidene fluoride) as a gel membrane of high safety for lithium ion battery. Energy Environ. Sci. 6, 618–624 (2013). (10.1039/C2EE23564A) / Energy Environ. Sci. by Y Zhu (2013)
  8. Staunton, E. et al. Structure and conductivity of the crystalline polymer electrolyte beta-PEO6:LiAsF6 . J. Am. Chem. Soc. 127, 12176–12177 (2005). (10.1021/ja053249v) / J. Am. Chem. Soc. by E Staunton (2005)
  9. Wright, P. V. Developments in Polymer Electrolytes for Lithium Batteries. MRS Bull. 27, 597–602 (2002). (10.1557/mrs2002.194) / MRS Bull. by PV Wright (2002)
  10. Berthier, C. et al. Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ionics 11, 91–96 (1983). (10.1016/0167-2738(83)90068-1) / Solid State Ionics by C Berthier (1983)
  11. Aetukuri, N. B. et al. Flexible Ion-Conducting Composite Membranes for Lithium Batteries. Adv. Energy Mater. 10.1002/aenm.201500265 (2015). (10.1002/aenm.201500265)
  12. Fergus, J. W. Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 195, 4554–4569 (2010). (10.1016/j.jpowsour.2010.01.076) / J. Power Sources by JW Fergus (2010)
  13. Fenton, D. E. et al. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14, 589 (1973). (10.1016/0032-3861(73)90146-8) / Polymer by DE Fenton (1973)
  14. Armand, M. Polymer Electrolytes. Annu. Rev. Mater. Res. 16, 245–261 (1986). (10.1146/annurev.ms.16.080186.001333) / Annu. Rev. Mater. Res. by M Armand (1986)
  15. Hovington, P. et al. New lithium metal polymer solid-state battery for an ultrahigh energy: nano C-LiFePO4 versus nano Li1.2V3O8 . Nano Lett. 15, 2671–2678 (2015). (10.1021/acs.nanolett.5b00326) / Nano Lett. by P Hovington (2015)
  16. Zhou, D. et al. In Situ Synthesis of a Hierarchical All-Solid-State Electrolyte Based on Nitrile Materials for High-Performance Lithium-Ion Batteries. Adv. Energy Mater. 10.1002/aenm.201500353 (2015). (10.1002/aenm.201500353)
  17. Wang, Y. et al. A Particle-Controlled, High-Performance, Gum-Like Electrolyte for Safe and Flexible Energy Storage Devices Adv. Energy Mater. 5, Art. No. 201400463 (2015). (10.1002/aenm.201400463)
  18. MacFarlane, D. R. et al. Energy applications of ionic liquids. Energy Environ. Sci. 7, 232–250 (2014). (10.1039/C3EE42099J) / Energy Environ. Sci. by DR MacFarlane (2014)
  19. Suleman, M. et al. Structural and electrochemical properties of succinonitrile-based gel polymer electrolytes: role of ionic liquid addition. J. Phys. Chem. B 117, 7436–7643 (2013). (10.1021/jp312358x) / J. Phys. Chem. B by M Suleman (2013)
  20. Nair, J. R. et al. Methacrylic-based solid polymer electrolyte membranes for lithium-based batteries by a rapid UV-curing process. React. Funct. Polym. 71, 409–416 (2011). (10.1016/j.reactfunctpolym.2010.12.007) / React. Funct. Polym. by JR Nair (2011)
  21. Fan, L. Z. et al. Succinonitrile as a Versatile Additive for Polymer Electrolytes. Adv. Funct. Mater. 17, 2800–2807 (2007). (10.1002/adfm.200601070) / Adv. Funct. Mater. by LZ Fan (2007)
  22. Abraham, K. M. et al. Highly Conductive PEO-like Polymer Electrolytes. Chem. Mater. 9, 1978–1988 (1997). (10.1021/cm970075a) / Chem. Mater. by KM Abraham (1997)
  23. Tang, S. et al. Glymes as versatile solvents for chemical reactions and processes: from the laboratory to industry. RSC Adv. 4, 11251–11287 (2014). (10.1039/c3ra47191h) / RSC Adv. by S Tang (2014)
  24. Zhang, C. et al. Ionic Conductivity in the Solid Glyme Complexes [CH3O(CH2CH2O)nCH3]:LiAsF6 (n = 3,4). J. Am. Chem. Soc. 129, 8700–8701 (2007). (10.1021/ja073145f) / J. Am. Chem. Soc. by C Zhang (2007)
  25. Zhang, C. et al. Structure and Conductivity of Small-Molecule Electrolytes [CH3O(CH2CH2O)nCH3]:LiAsF6 (n = 8–12). Chem. Mater. 20, 4039–4044 (2008). (10.1021/cm8005327) / Chem. Mater. by C Zhang (2008)
  26. Park, M. S. et al. A highly reversible lithium metal anode. Sci. Rep. 4, 3815–3822 (2014). (10.1038/srep03815) / Sci. Rep. by MS Park (2014)
  27. Mandai, T. et al. Criteria for solvate ionic liquids. Phys. Chem. Chem. Phys. 16, 8761–8772 (2014). (10.1039/c4cp00461b) / Phys. Chem. Chem. Phys. by T Mandai (2014)
  28. Ueno, K. et al. Glyme-Lithium Salt Equimolar Molten Mixtures: Concentrated Solutions or Solvate Ionic Liquids? J. Phys. Chem. B 116, 11323–11331 (2012). (10.1021/jp307378j) / J. Phys. Chem. B by K Ueno (2012)
  29. Shao, J. et al. Visible light initiating systems for photopolymerization: status, development and challenges Polym. Chem. 5, 4195–4210 (2014). (10.1039/C4PY00072B) / Polym. Chem. by J Shao (2014)
  30. Crivello, J. V. et al. Photopolymer Materials and Processes for Advanced Technologies. Chem. Mater. 26, 533–548 (2014). (10.1021/cm402262g) / Chem. Mater. by JV Crivello (2014)
  31. Vilela, F. et al. Conjugated porous polymers for energy applications. Energy Environ. Sci. 5, 7819–7832 (2012). (10.1039/c2ee22002d) / Energy Environ. Sci. by F Vilela (2012)
  32. Griffini, G. et al. Multifunctional Luminescent Down-Shifting Fluoropolymer Coatings: A Straightforward Strategy to Improve the UV-Light Harvesting Ability and Long-Term Outdoor Stability of Organic Dye-Sensitized Solar Cells. Adv. Energy Mater. 5, Art. No. 201401312 (2015). (10.1002/aenm.201401312)
  33. Zhang, S. et al. Ionic liquid-based green processes for energy production. Chem. Soc. Rev. 43, 7838–7869 (2014). (10.1039/C3CS60409H) / Chem. Soc. Rev. by S Zhang (2014)
  34. Kitazawa, Y. et al. Gelation of Solvate Ionic Liquid by Self-Assembly of Block Copolymer and Characterization as Polymer Electrolyte. Macromolecules 47, 6009–6016 (2014). (10.1021/ma501296m) / Macromolecules by Y Kitazawa (2014)
  35. Xu, K. Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chem. Rev. 114, 11503–11618 (2014). (10.1021/cr500003w) / Chem. Rev. by K Xu (2014)
  36. Stachowiak, T. B. et al. Patternable Protein Resistant Surfaces for Multifunctional Microfluidic Devices via Surface Hydrophilization of Porous Polymer Monoliths Using Photografting. Chem. Mater. 18, 5950–5957 (2006). (10.1021/cm0617034) / Chem. Mater. by TB Stachowiak (2006)
  37. Kim, G. T. et al. UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic liquids. J. Power Sources 195, 6130–6137 (2010). (10.1016/j.jpowsour.2009.10.079) / J. Power Sources by GT Kim (2010)
  38. Schulze, M. W. et al. High-Modulus, High-Conductivity Nanostructured Polymer Electrolyte Membranes via Polymerization-Induced Phase Separation. Nano Lett. 14, 122–126 (2014). (10.1021/nl4034818) / Nano Lett. by MW Schulze (2014)
  39. Yoo, P. J. et al. Polymer Elasticity-Driven Wrinkling and Coarsening in High Temperature Buckling of Metal-Capped Polymer Thin Films. Phys. Rev. Lett. 93, art. No. 034301-1 (2004). (10.1103/PhysRevLett.93.034301)
  40. Angulakhsmi, N. et al. Cycling profile of innovative nanochitin-incorporated poly (ethylene oxide) based electrolytes for lithium batteries. J. Power Sources 228, 294–299 (2013). (10.1016/j.jpowsour.2012.11.007) / J. Power Sources by N Angulakhsmi (2013)
  41. Lee, D. J. et al. A tetraethylene glycol dimethylether - lithium bis(oxalate)borate (TEGDME-LiBOB) electrolyte for advanced lithium ion batteries. Electrochem. Commun. 14, 43–46 (2012). (10.1016/j.elecom.2011.10.027) / Electrochem. Commun. by DJ Lee (2012)
  42. Xue, Z. et al. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3, 19218–19253 (2015). (10.1039/C5TA03471J) / J. Mater. Chem. A by Z Xue (2015)
  43. Hill, L. W. Calculation of crosslink density in short chain networks. Prog. Org. Coat. 31, 235–243 (1997). (10.1016/S0300-9440(97)00081-7) / Prog. Org. Coat. by LW Hill (1997)
  44. Wen, S. J. et al. FTIR characterization of PEO + LiN(CF3SO2)2 electrolytes. J. Electroanal. Chem. 408, 113–117 (1996). (10.1016/0022-0728(96)04536-6) / J. Electroanal. Chem. by SJ Wen (1996)
  45. Khurana, R. et al. Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014) (10.1021/ja502133j) / J. Am. Chem. Soc. by R Khurana (2014)
  46. Lahiri, A. et al. LiTFSI in 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)amide: a possible electrolyte for ionic liquid based lithium ion batteries. Phys. Chem. Chem. Phys. 17, 11161–11164 (2015). (10.1039/C5CP01337B) / Phys. Chem. Chem. Phys. by A Lahiri (2015)
  47. Smedley, S. I. et al. The Interpretation of Conductivity in Liquids, Plenum Press, New York, 82 (1980). (10.1007/978-1-4684-3818-5)
  48. Barteau, K. P. et al. Allyl Glycidyl Ether-Based Polymer Electrolytes for Room Temperature Lithium Batteries. Macromolecules 46, 8988–8994 (2013) (10.1021/ma401267w) / Macromolecules by KP Barteau (2013)
  49. Evans, J. et al. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28, 2324–2328 (1987). (10.1016/0032-3861(87)90394-6) / Polymer by J Evans (1987)
  50. Boaretto, N. et al. Highly Conducting 3D-Hybrid Polymer Electrolytes for Lithium Batteries Based on Siloxane Networks and Cross-Linked Organic Polar Interphases. Chem. Mater. 26, 6339–6350 (2014). (10.1021/cm5024647) / Chem. Mater. by N Boaretto (2014)
  51. Bouchet, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452−457 (2013). (10.1038/nmat3602) / Nat. Mater. by R Bouchet (2013)
  52. Chazalviel, J. N. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42 7355−7367 (1990). (10.1103/PhysRevA.42.7355) / Phys. Rev. A by JN Chazalviel (1990)
  53. Thomas, K. E. et al. Comparison of lithium-polymer cell performance with unity and nonunity transference numbers. J. Power Sources 89, 132−138 (2000). (10.1016/S0378-7753(00)00420-1) / J. Power Sources by KE Thomas (2000)
  54. Wang, H. et al. Interface Properties between Lithium Metal and a Composite Polymer Electrolyte of PEO18Li(CF3SO2)2N-Tetraethylene Glycol Dimethyl Ether. Membranes 3, 298–310 (2013). (10.3390/membranes3040298) / Membranes by H Wang (2013)
  55. Kriz, J. et al. Nature and dynamics of lithium ion coordination in oligo(ethylene glycol) dimethacrylate-solvent systems: NMR, Raman and quantum mechanical study. J. Phys. Chem. A 103, 8505–8515 (1999). (10.1021/jp991410g) / J. Phys. Chem. A by J Kriz (1999)
  56. Ma, Y. P. et al. The Measurement of a Complete Set of Transport Properties for a Concentrated Solid Polymer Electrolyte Solution. J. Electrochem. Soc. 142, 1859–1868 (1995). (10.1149/1.2044206) / J. Electrochem. Soc. by YP Ma (1995)
  57. Schaefer, J. L. et al. High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites. Chem. Mater. 25, 834–839 (2013). (10.1021/cm303091j) / Chem. Mater. by JL Schaefer (2013)
  58. Zhang, H. et al. Lithium bis(fluorosulfonyl)imide /poly(ethylene oxide) polymer electrolyte. Electrochim. Acta 133, 529–538 (2014). (10.1016/j.electacta.2014.04.099) / Electrochim. Acta by H Zhang (2014)
  59. Laoire, C. O. et al. Rechargeable Lithium/TEGDME-LiPF6-O2 Battery. J. Electrochem. Soc. 158, A302–A308 (2011). (10.1149/1.3531981) / J. Electrochem. Soc. by CO Laoire (2011)
  60. Peled, E. et al. The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems-The Solid Electrolyte Interphase Model. J. Electrochem. Soc. 126, 2047–2051 (1979). (10.1149/1.2128859) / J. Electrochem. Soc. by E Peled (1979)
  61. Croce, F. et al. Physical and Chemical Properties of Nanocomposite Polymer Electrolytes. J. Phys. Chem. B 103, 10632–10638 (1999). (10.1021/jp992307u) / J. Phys. Chem. B by F Croce (1999)
  62. Appetecchi, G. B. et al. Transport and interfacial properties of composite polymer electrolytes. Electrochim. Acta 45, 1481–1490 (2000). (10.1016/S0013-4686(99)00363-1) / Electrochim. Acta by GB Appetecchi (2000)
  63. Borghini, M. C. et al. Reliability of lithium batteries with crosslinked polymer electrolytes. Electrochim. Acta 41, 2369–2373 (1996). (10.1016/0013-4686(96)00014-X) / Electrochim. Acta by MC Borghini (1996)
  64. Stone, G. M. et al. Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries. J. Electrochem. Soc. 159, A222–A227 (2012). (10.1149/2.030203jes) / J. Electrochem. Soc. by GM Stone (2012)
  65. Bella, F. et al. Aqueous dye-sensitized solar cells. Chem. Soc. Rev. 44, 3431–3473 (2015). (10.1039/C4CS00456F) / Chem. Soc. Rev. by F Bella (2015)
  66. Ueno, M. et al. Electrochemical properties of cross-linked polymer electrolyte by electron beam irradiation and application to lithium ion batteries. J. Power Sources 196, 4756–4761 (2011). (10.1016/j.jpowsour.2011.01.054) / J. Power Sources by M Ueno (2011)
  67. Watanabe, M. et al. Estimation of Li+ transport number in polymer electrolytes by the combination of complex impedance and potentiostatic polarization measurements. Solid State Ionics 28–30, 911–917 (1988). (10.1016/0167-2738(88)90303-7) / Solid State Ionics by M Watanabe (1988)
  68. Zhang, H. et al. Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte. Electrochim. Acta 133, 529–538 (2014). (10.1016/j.electacta.2014.04.099) / Electrochim. Acta by H Zhang (2014)
  69. Gerbaldi, C. et al. High-rate V2O5-based Li-ion thin film polymer cell with outstanding long-term cyclability. Nano Energy 2, 1279–1286 (2013). (10.1016/j.nanoen.2013.06.007) / Nano Energy by C Gerbaldi (2013)
Dates
Type When
Created 9 years, 7 months ago (Jan. 21, 2016, 6:13 a.m.)
Deposited 2 years, 7 months ago (Jan. 4, 2023, 6:44 p.m.)
Indexed 1 day, 3 hours ago (Aug. 21, 2025, 2:23 p.m.)
Issued 9 years, 7 months ago (Jan. 21, 2016)
Published 9 years, 7 months ago (Jan. 21, 2016)
Published Online 9 years, 7 months ago (Jan. 21, 2016)
Funders 0

None

@article{Porcarelli_2016, title={Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries}, volume={6}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep19892}, DOI={10.1038/srep19892}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Porcarelli, Luca and Gerbaldi, Claudio and Bella, Federico and Nair, Jijeesh Ravi}, year={2016}, month=jan }