Abstract
AbstractBy means of extensive ab initio calculations, a new two-dimensional (2D) atomic material tin selenide monolayer (coined as tinselenidene) is predicted to be a semiconductor with an indirect gap (~1.45 eV) and a high hole mobility (of order 10000 cm2V−1S−1) and will bear an indirect-direct gap transition under a rather low strain (<0.5 GPa). Tinselenidene has a very small Young’s modulus (20–40 GPa) and an ultralow lattice thermal conductivity (<3 Wm−1K−1 at 300 K), making it probably the most flexible and most heat-insulating material in known 2D atomic materials. In addition, tinseleniden has a large negative Poisson’s ratio of −0.17, thus could act as a 2D auxetic material. With these intriguing properties, tinselenidene could have wide potential applications in thermoelectrics, nanomechanics and optoelectronics.
References
60
Referenced
167
-
Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
(
10.1038/nature04233
) / Nature by KS Novoselov (2005) -
Jin, C., Lin, F., Suenaga, K. & lijima, S. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 102, 195505 (2009).
(
10.1103/PhysRevLett.102.195505
) / Phys. Rev. Lett. by C Jin (2009) -
Wang, Q. H., Kalantar-zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).
(
10.1038/nnano.2012.193
) / Nat. Nanotechnol. by QH Wang (2012) -
Vogt, P. et al. Silicene: compelling experimental evidence for graphenelike two dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012).
(
10.1103/PhysRevLett.108.155501
) / Phys. Rev. Lett. by P Vogt (2012) -
Xu, M., Liang, T., Shi, M. & Chen, H. Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013).
(
10.1021/cr300263a
) / Chem. Rev. by M Xu (2013) -
Liu, H. et al. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano 8, 4033–4041 (2014).
(
10.1021/nn501226z
) / ACS Nano by H Liu (2014) -
Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).
(
10.1038/nnano.2014.35
) / Nat. Nanotechnol. by L Li (2014) -
Das, S., Demarteau, M. & Roelofs, A. Ambipolar phosphorene field effect transistor. ACS Nano 8, 11730–11738 (2014).
(
10.1021/nn505868h
) / ACS Nano by S Das (2014) -
Gillgren, N. et al. Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Mater. 2, 011001 (2015).
(
10.1088/2053-1583/2/1/011001
) / 2D Mater. by N Gillgren (2015) -
Doganov, R. A. et al. Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nat. Commun. 6, 6647 (2015).
(
10.1038/ncomms7647
) / Nat. Commun. by RA Doganov (2015) -
Buscema, M. et al. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat. Commun. 5, 4651 (2014).
(
10.1038/ncomms5651
) / Nat. Commun. by M Buscema (2014) -
Fei, R. & Yang, L. Strain-Engineering the Anisotropic Electrical Conductance of Few-Layer Black Phosphorus. Nano Lett. 14, 2884– 2889 (2014).
(
10.1021/nl500935z
) / Nano Lett. by R Fei (2014) -
Jiang, J.-W. & Park, H. S. Negative Poisson’s ratio in single-layer black phosphorus. Nat. Commun. 5, 4727 (2014).
(
10.1038/ncomms5727
) / Nat. Commun. by J-W Jiang (2014) -
Rodin, A. S., Carvalho, A. & Neto, A. H. C. Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 112, 176801 (2014).
(
10.1103/PhysRevLett.112.176801
) / Phys. Rev. Lett. by AS Rodin (2014) -
Peng, X. & Wei, Q. Copple, Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. A. Phys. Rev. B 90, 085402 (2014).
(
10.1103/PhysRevB.90.085402
) / Phys. Rev. B by X Peng (2014) -
Qin, G. et al. Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance. Sci. Rep. 4, 6946 (2014).
(
10.1038/srep06946
) / Sci. Rep. by G Qin (2014) -
Qin, G. et al. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Phys. Chem. Chem. Phys. 17, 4854– 4858 (2014).
(
10.1039/C4CP04858J
) / Phys. Chem. Chem. Phys. by G Qin (2014) -
Qiao, J., Kong, X., Hu, Z.-X., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014).
(
10.1038/ncomms5475
) / Nat. Commun. by J Qiao (2014) -
Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 4, 4458 (2014).
(
10.1038/ncomms5458
) / Nat. Commun. by F Xia (2014) -
Wang, X. et al. Highly Anisotropic and Robust Excitons in Monolayer Black Phosphorus. Nat. Nanotechnol. 10, 517–521 (2015).
(
10.1038/nnano.2015.71
) / Nat. Nanotechnol. by X Wang (2015) -
Kim, J.-S. et al. Toward air-stable multilayer phosphorene thin-films and transistors. Sci. Rep. 5, 8989 (2015).
(
10.1038/srep08989
) / Sci. Rep. by J-S Kim (2015) -
Zhu, W. et al. Flexible Black Phosphorus Ambipolar Transistors, Circuits and AM Demodulator. Nano Lett. 15, 1883–1890 (2015).
(
10.1021/nl5047329
) / Nano Lett. by W Zhu (2015) -
Cao, Y. et al. Quality Heterostructures from Two-Dimensional Crystals Unstable in Air by Their Assembly in Inert Atmosphere. Nano Lett. 15, 4914–4921 (2015).
(
10.1021/acs.nanolett.5b00648
) / Nano Lett. by Y Cao (2015) -
Chen, X. et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun. 6, 7315 (2015).
(
10.1038/ncomms8315
) / Nat. Commun. by X Chen (2015) - Li, L. et al. Quantum Hall Effect in Black Phosphorus Two-dimensional Electron Gas, arXiv 1504. 07155v2 (2015).
-
Franzman, M. A., Schlenker, C. W., Thompson, M. E. & Brutchey, R. L. Solution-Phase Synthesis of SnSe Nanocrystals for Use in Solar Cells. J. Am. Chem. Soc. 132, 4060–2061 (2010).
(
10.1021/ja100249m
) / J. Am. Chem. Soc. by MA Franzman (2010) -
Zhao, L.-D. et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373– 377 (2014).
(
10.1038/nature13184
) / Nature by L-D Zhao (2014) -
Shi, G.-S. & Kioupakis, E. Quasiparticle band structures and thermoelectric transport properties of p-type SnSe. J. Appl. Phys. 117, 065103 (2015).
(
10.1063/1.4907805
) / J. Appl. Phys. by G-S Shi (2015) -
Li, L. et al. Single-Layer Single-Crystalline SnSe Nanosheets. J. Am. Chem. Soc. 135, 1213–1216 (2013).
(
10.1021/ja3108017
) / J. Am. Chem. Soc. by L Li (2013) -
Zhao, S. et al. Controlled synthesis of single-crystal SnSe nanoplates. Nano Res. 8, 288–295 (2015).
(
10.1007/s12274-014-0676-8
) / Nano Res. by S Zhao (2015) -
Cai, Y. et al. Giant Phononic Anisotropy and Unusual Anharmonicity of Phosphorene: Interlayer Coupling and Strain Engineering. Adv. Funct. Mater. 25, 2230–2236 (2015).
(
10.1002/adfm.201404294
) / Adv. Funct. Mater. by Y Cai (2015) -
Li, W., Carrete, J., Katcho, N. A. & Mingo, N. A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 1747–1758 (2014).
(
10.1016/j.cpc.2014.02.015
) / Comput. Phys. Commun. by W Li (2014) -
Li, W., Mingo, N., Lindsay, L., Broido, D. A., Stewart D. A. & Katcho N. A. Thermal conductivity of diamond nanowires from first principles. Phys. Rev. B 85, 195436 (2012).
(
10.1103/PhysRevB.85.195436
) / Phys. Rev. B by W Li (2012) -
Cai, Y., Lan, J., Zhang, G. & Zhang, Y.-W. Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys. Rev. B 89, 035438 (2014).
(
10.1103/PhysRevB.89.035438
) / Phys. Rev. B by Y Cai (2014) -
Cepellotti, A. et al. Phonon hydrodynamics in two-dimensional materials. Nat. Commun. 6, 6400 (2015).
(
10.1038/ncomms7400
) / Nat. Commun. by A Cepellotti (2015) -
Taube, A., Judek, J., Łapińska, A. & Zdrojek, M. Temperature-Dependent Thermal Properties of Supported MoS2 Monolayers. ACS Appl. Mater. Interf. 7, 5061–5065 (2015).
(
10.1021/acsami.5b00690
) / ACS Appl. Mater. Interf. by A Taube (2015) -
Zhang, X. et al. Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential. Phys. Rev. B 89, 054310 (2014).
(
10.1103/PhysRevB.89.054310
) / Phys. Rev. B by X Zhang (2014) -
Singh, J. P. Transport and optical properties of hot-wall-grown tin selenide films. J. of Mater. Sci. Materials in Electronics. 2, 105–108 (1991).
(
10.1007/BF00694760
) / J. of Mater. Sci. Materials in Electronics. by JP Singh (1991) -
Yu, J. G., Yue, A. S. & Stafsudd, O. M. Growth and electronic properties of the SnSe semiconductor. J. Crystal Growth 54, 248–252 (1981).
(
10.1016/0022-0248(81)90469-3
) / J. Crystal Growth by JG Yu (1981) -
Loa, I., Husband, R. J., Downie, R. A. & Popuri, S. R. J.-w. G. Structural changes in thermoelectric SnSe at high pressures. J. Phys. Condens. Matter 27, 072202 (2015).
(
10.1088/0953-8984/27/7/072202
) / J. Phys. Condens. Matter by I Loa (2015) -
Wei, Q. & Peng, X. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104, 251915 (2014).
(
10.1063/1.4885215
) / Appl. Phys. Lett. by Q Wei (2014) -
Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).
(
10.1126/science.1157996
) / Science by C Lee (2008) -
Song, L. et al. Nano Lett. 10, 3209–3215 (2010).
(
10.1021/nl1022139
) / Nano Lett. by L Song (2010) -
Castellanos-Gomez, A. et al. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 24, 772–775 (2012).
(
10.1002/adma.201103965
) / Adv. Mater. by A Castellanos-Gomez (2012) -
Andrew, R. C., Mapasha, R. E., Ukpong, A. M. & Chetty, N. Mechanical properties of graphene and boronitrene. Phys. Rev. B, 85, 125428 (2012).
(
10.1103/PhysRevB.85.125428
) / Phys. Rev. B by RC Andrew (2012) -
Feng, J., Qian, X., Huang, C.-W. & Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nature Photo. 6, 866–872 (2012).
(
10.1038/nphoton.2012.285
) / Nature Photo. by J Feng (2012) -
Akinwande, D., Petrone, N. & Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).
(
10.1038/ncomms6678
) / Nat. Commun. by D Akinwande (2014) -
Bruzzone, S. & Fiori, G. Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride. Appl. Phys. Lett. 99, 222108 (2011).
(
10.1063/1.3665183
) / Appl. Phys. Lett. by S Bruzzone (2011) -
Fiori, G. & Iannaccone, G. Multiscale Modeling for Graphene-Based Nanoscale Transistors. Proc. of IEEE 101, 1653–1669 (2013).
(
10.1109/JPROC.2013.2259451
) / Proc. of IEEE by G Fiori (2013) -
Chen, J., Xi, J., Wang, D. & Shuai, Z. Carrier Mobility in Graphyne Should Be Even Larger than That in Graphene: A Theoretical Prediction. J. Phys. Chem. Lett. 4, 1443–1448 (2013).
(
10.1021/jz4005587
) / J. Phys. Chem. Lett. by J Chen (2013) -
Long, M., Tang, L., Wang, D., Li, Y. & Shuai, Z. Electronic Structure and Carrier Mobility in Graphdiyne Sheet and Nanoribbons: Theoretical Predictions. ACS Nano. 5, 2593–2600 (2011).
(
10.1021/nn102472s
) / ACS Nano. by M Long (2011) -
Dai, J. & Zeng, X. C. Titanium Trisulfide Monolayer: Theoretical Prediction of a New Direct-Gap Semiconductor with High and Anisotropic Carrier Mobility. Angew. Chem. Int. Ed. 127, 7682–7686 (2015).
(
10.1002/ange.201502107
) / Angew. Chem. Int. Ed. by J Dai (2015) -
Cai, Y., Zhang, G. & Zhang, Y.-W. Polarity-Reversed Robust Carrier Mobility in Monolayer MoS2 Nanoribbons. J. Am. Chem. Soc. 136, 6269–6275 (2014).
(
10.1021/ja4109787
) / J. Am. Chem. Soc. by Y Cai (2014) -
Kresse, G. & Furthmüller, J. E. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
(
10.1103/PhysRevB.54.11169
) / Phys. Rev. B by G Kresse (1996) -
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865 (1996).
(
10.1103/PhysRevLett.77.3865
) / Phys. Rev. Lett. by JP Perdew (1996) -
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).
(
10.1103/PhysRevB.59.1758
) / Phys. Rev. B by G Kresse (1999) -
Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).
(
10.1103/PhysRevB.13.5188
) / Phys. Rev. B by HJ Monkhorst (1976) - Klimes, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys.: Condens. Matter 22, 022201 (2010). / J. Phys.: Condens. Matter by J Klimes (2010)
-
Tran, F. & Blaha, P. Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential. Phys. Rev. Lett. 102, 226401 (2009).
(
10.1103/PhysRevLett.102.226401
) / Phys. Rev. Lett. by F Tran (2009) -
Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).
(
10.1016/j.scriptamat.2015.07.021
) / Scr. Mater. by A Togo (2015)
Dates
Type | When |
---|---|
Created | 9 years, 6 months ago (Feb. 1, 2016, 5:03 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 4, 2023, 6:48 p.m.) |
Indexed | 1 month, 2 weeks ago (July 2, 2025, 12:56 p.m.) |
Issued | 9 years, 6 months ago (Feb. 1, 2016) |
Published | 9 years, 6 months ago (Feb. 1, 2016) |
Published Online | 9 years, 6 months ago (Feb. 1, 2016) |
@article{Zhang_2016, title={Tinselenidene: a Two-dimensional Auxetic Material with Ultralow Lattice Thermal Conductivity and Ultrahigh Hole Mobility}, volume={6}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep19830}, DOI={10.1038/srep19830}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Zhang, Li-Chuan and Qin, Guangzhao and Fang, Wu-Zhang and Cui, Hui-Juan and Zheng, Qing-Rong and Yan, Qing-Bo and Su, Gang}, year={2016}, month=feb }