Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractThree-dimensional structured illumination microscopy (3D-SIM) is a versatile and accessible method for super-resolution fluorescence imaging, but generating high-quality data is challenging, particularly for non-specialist users. We present SIMcheck, a suite of ImageJ plugins enabling users to identify and avoid common problems with 3D-SIM data and assess resolution and data quality through objective control parameters. Additionally, SIMcheck provides advanced calibration tools and utilities for common image processing tasks. This open-source software is applicable to all commercial and custom platforms and will promote routine application of super-resolution SIM imaging in cell biology.

Bibliography

Ball, G., Demmerle, J., Kaufmann, R., Davis, I., Dobbie, I. M., & Schermelleh, L. (2015). SIMcheck: a Toolbox for Successful Super-resolution Structured Illumination Microscopy. Scientific Reports, 5(1).

Authors 6
  1. Graeme Ball (first)
  2. Justin Demmerle (additional)
  3. Rainer Kaufmann (additional)
  4. Ilan Davis (additional)
  5. Ian M. Dobbie (additional)
  6. Lothar Schermelleh (additional)
References 20 Referenced 266
  1. Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007). (10.1126/science.1137395) / Science by SW Hell (2007)
  2. Huang, B., Babcock, H. & Zhuang, X. Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells. Cell 143, 1047–1058 (2010). (10.1016/j.cell.2010.12.002) / Cell by B Huang (2010)
  3. Schermelleh, L., Heintzmann, R. & Leonhardt, H. A guide to super-resolution fluorescence microscopy. J Cell Biol 190, 165–175 (2010). (10.1083/jcb.201002018) / J Cell Biol by L Schermelleh (2010)
  4. Zhang, J., Campbell, R. E., Ting, A. Y. & Tsien, R. Y. Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3, 906–918 (2002). (10.1038/nrm976) / Nat Rev Mol Cell Biol by J Zhang (2002)
  5. Heintzmann, R. & Cremer, C. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. in Proc SPIE (Bigio, I. J. et al.) 3568, 185–196 (SPIE, 1999). (10.1117/12.336833) / Proc SPIE (Bigio, I. J. et al.) by R Heintzmann (1999)
  6. Gustafsson, M. G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198, 82–87 (2000). (10.1046/j.1365-2818.2000.00710.x) / J Microsc by MG Gustafsson (2000)
  7. Gustafsson, M. G. L. et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94, 4957–4970 (2008). (10.1529/biophysj.107.120345) / Biophys J by MGL Gustafsson (2008)
  8. Schermelleh, L. et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320, 1332–1336 (2008). (10.1126/science.1156947) / Science by L Schermelleh (2008)
  9. Weil, T. T. et al. Drosophila patterning is established by differential association of mRNAs with P bodies. Nat Cell Biol 14, 1305–1313 (2012). (10.1038/ncb2627) / Nat Cell Biol by TT Weil (2012)
  10. Lesterlin, C., Ball, G., Schermelleh, L. & Sherratt, D. J. RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature 506, 249–253 (2014). (10.1038/nature12868) / Nature by C Lesterlin (2014)
  11. Burnette, D. T. et al. A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells. J Cell Biol 205, 83–96 (2014). (10.1083/jcb.201311104) / J Cell Biol by DT Burnette (2014)
  12. Smeets, D. et al. Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenetics Chromatin 7, 8 (2014). (10.1186/1756-8935-7-8) / Epigenetics Chromatin by D Smeets (2014)
  13. Rego, E. H. & Shao, L. Practical structured illumination microscopy. Methods Mol Biol 1251, 175–192 (2015). (10.1007/978-1-4939-2080-8_10) / Methods Mol Biol by EH Rego (2015)
  14. Engel, U. Structured illumination superresolution imaging of the cytoskeleton. Methods Cell Biol 123, 315–333 (2014). (10.1016/B978-0-12-420138-5.00017-3) / Methods Cell Biol by U Engel (2014)
  15. Turnbull, L. et al. Super-resolution imaging of the cytokinetic Z ring in live bacteria using fast 3D-structured illumination microscopy (f3D-SIM). J Vis Exp 51469 (2014). doi: 10.3791/51469. (10.3791/51469)
  16. Editorial. Seeing in super-resolution. Nat Meth 11, 1183 (2014). (10.1038/nmeth.3206)
  17. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat Meth 9 6, 71–675 (2012). (10.1038/nmeth.2089) / Nat Meth by CA Schneider (2012)
  18. Demmerle, J., Wegel, E., Schermelleh, L. & Dobbie, I. M. Assessing resolution in super-resolution imaging. Methods doi: 10.1016/j.ymeth.2015.07.001 (2015). (10.1016/j.ymeth.2015.07.001)
  19. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat Meth 9, 676–682 (2012). (10.1038/nmeth.2019) / Nat Meth by J Schindelin (2012)
  20. Anscombe, F. J. The transformation of Poisson, binomial and negative-binomial data. Biometrika 35, 246–254 (1948). (10.1093/biomet/35.3-4.246) / Biometrika by FJ Anscombe (1948)
Dates
Type When
Created 9 years, 9 months ago (Nov. 3, 2015, 5:05 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 8:47 a.m.)
Indexed 3 weeks, 3 days ago (July 30, 2025, 10:46 a.m.)
Issued 9 years, 9 months ago (Nov. 3, 2015)
Published 9 years, 9 months ago (Nov. 3, 2015)
Published Online 9 years, 9 months ago (Nov. 3, 2015)
Funders 0

None

@article{Ball_2015, title={SIMcheck: a Toolbox for Successful Super-resolution Structured Illumination Microscopy}, volume={5}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep15915}, DOI={10.1038/srep15915}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Ball, Graeme and Demmerle, Justin and Kaufmann, Rainer and Davis, Ilan and Dobbie, Ian M. and Schermelleh, Lothar}, year={2015}, month=nov }