Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractParticle shape plays a crucial role in determining packing characteristics. Real particles in nature usually have rounded corners. In this work, we systematically investigate the rounded corner effect on the dense packings of spherotetrahedral particles. The evolution of dense packing structure as the particle shape continuously deforms from a regular tetrahedron to a sphere is investigated, starting both from the regular tetrahedron and the sphere packings. The dimer crystal and the quasicrystal approximant are used as initial configurations, as well as the two densest sphere packing structures. We characterize the evolution of spherotetrahedron packings from the ideal tetrahedron (s = 0) to the sphere (s = 1) via a single roundness parameter s. The evolution can be partitioned into seven regions according to the shape variation of the packing unit cell. Interestingly, a peak of the packing density Φ is first observed at s ≈ 0.16 in the Φ-s curves where the tetrahedra have small rounded corners. The maximum density of the deformed quasicrystal approximant family (Φ ≈ 0.8763) is slightly larger than that of the deformed dimer crystal family (Φ ≈ 0.8704) and both of them exceed the densest known packing of ideal tetrahedra (Φ ≈ 0.8563).

Bibliography

Jin, W., Lu, P., & Li, S. (2015). Evolution of the dense packings of spherotetrahedral particles: from ideal tetrahedra to spheres. Scientific Reports, 5(1).

Authors 3
  1. Weiwei Jin (first)
  2. Peng Lu (additional)
  3. Shuixiang Li (additional)
References 38 Referenced 17
  1. Zallen, R. The Physics of Amorphous Solids (Wiley, New York, 1983). (10.1002/3527602798)
  2. Torquato, S. Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer, New York, 2002). (10.1115/1.1483342)
  3. Chaikin, P. M. & Lubensky, T. C. Principles of Condensed Matter Physics (Cambridge University Press, New York, 2000).
  4. Edwards, S. F. in Granular Matter (eds. A. Mehta ) 121–140 (Springer, New York, 1994). (10.1007/978-1-4612-4290-1_4)
  5. Aste, T. & Weaire, D. The Pursuit of Perfect Packing 2nd edition (Taylor & Francis, Boca Raton, Fla., 2008). (10.1201/9781420068184)
  6. Chen, E. R., Engel, M. & Glotzer, S. C. Dense crystalline dimer packings of regular tetrahedra. Discrete Comput. Geom. 44, 253–280 (2010). (10.1007/s00454-010-9273-0) / Discrete Comput. Geom. by ER Chen (2010)
  7. Haji-Akbari, A., Engel, M., Keys, A. S., Zheng, X., Petschek, R. G., Palffy-Muhoray, P. & Glotzer, S. C. Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra. Nature (London) 462, 773–777 (2009). (10.1038/nature08641) / Nature (London) by A Haji-Akbari (2009)
  8. Baule, A. & Makse, H. A. Fundamental challenges in packing problems: from spherical to non-spherical particles. Soft Matter 10, 4423–4429 (2014). (10.1039/c3sm52783b) / Soft Matter by A Baule (2014)
  9. Baule, A., Mari, R., Bo, L., Portal, L. & Makse, H. A. Mean-field theory of random close packings of axisymmetric particles. Nature Commun. 4, 2194 (2013). (10.1038/ncomms3194) / Nature Commun. by A Baule (2013)
  10. Van Anders, G., Klotsa, D., Ahmed, N. K. & Engel Glotzer, S. C. Understanding shape entropy through local dense packing. Proc. Natl. Acad. Sci. USA. 111, E4812–E4821 (2014). (10.1073/pnas.1418159111) / Proc. Natl. Acad. Sci. USA. by G Van Anders (2014)
  11. Haji-Akbari, A., Engel, M. & Glotzer, S. C. Phase diagram of hard tetrahedra. J. Chem. Phys. 135, 194101 (2011). (10.1063/1.3651370) / J. Chem. Phys. by A Haji-Akbari (2011)
  12. Chen, E. R. A dense packing of regular tetrahedra. Discrete Comput. Geom. 40, 214–240 (2008). (10.1007/s00454-008-9101-y) / Discrete Comput. Geom. by ER Chen (2008)
  13. Conway, J. H. & Torquato, S. Packing, tiling and covering with tetrahedra. Proc. Natl. Acad. Sci. USA. 103, 10612–10617 (2006). (10.1073/pnas.0601389103) / Proc. Natl. Acad. Sci. USA. by JH Conway (2006)
  14. Torquato, S. & Jiao, Y. Dense packings of the Platonic and Archimedean solids. Nature (London) 460, 876–879 (2009). (10.1038/nature08239) / Nature (London) by S Torquato (2009)
  15. Torquato, S. & Jiao, Y. Dense packings of polyhedral: Platonic and Archimedean solids. Phys. Rev. E 80, 041104 (2009). (10.1103/PhysRevE.80.041104) / Phys. Rev. E by S Torquato (2009)
  16. Kallus, Y., Elser, V. & Gravel, S. Dense periodic packings of tetrahedra with small repeating units. Discrete Comput. Geom. 44, 245–252 (2010). (10.1007/s00454-010-9254-3) / Discrete Comput. Geom. by Y Kallus (2010)
  17. Betke, U. & Henk, M. Densest lattice packings of 3-polytopes. Comput. Geom. 16, 157–186 (2000). (10.1016/S0925-7721(00)00007-9) / Comput. Geom. by U Betke (2000)
  18. Baker, J. & Kudrolli, A. Maximum and minimum stable random packings of Platonic solids. Phys. Rev. E 82, 061304 (2010). (10.1103/PhysRevE.82.061304) / Phys. Rev. E by J Baker (2010)
  19. Jaoshvili, A., Esakia, A., Porrati, M. & Chaikin, P. M. Experiments on the random packing of tetrahedral dice. Phys. Rev. Lett. 104, 185501 (2010). (10.1103/PhysRevLett.104.185501) / Phys. Rev. Lett. by A Jaoshvili (2010)
  20. Neudecker, M., Ulrich, S., Herminghaus, S. & Schröter, M. Jammed frictional tetrahedra are hyperstatic. Phys. Rev. Lett. 111, 028001 (2013). (10.1103/PhysRevLett.111.028001) / Phys. Rev. Lett. by M Neudecker (2013)
  21. Smith, K. C., Alam, M. & Fisher, T. S. Athermal jamming of soft frictionless Platonic solids. Phys. Rev. E 82, 051304 (2010). (10.1103/PhysRevE.82.051304) / Phys. Rev. E by KC Smith (2010)
  22. Smith, K. C., Fisher, T. S. & Alam, M. Isostaticity of constraints in amorphous jammed systems of soft frictionless Platonic solids. Phys. Rev. E 84, 030301 (2011). (10.1103/PhysRevE.84.030301) / Phys. Rev. E by KC Smith (2011)
  23. Smith, K. C., Srivastava, I., Fisher, T. S. & Alam, M. Variable-cell method for stress-controlled jamming of athermal, frictionless grains. Phys. Rev. E 89, 042203 (2014). (10.1103/PhysRevE.89.042203) / Phys. Rev. E by KC Smith (2014)
  24. Jiao, Y. & Torquato, S. Maximally random jammed packings of Platonic solids: hyperuniform long-range correlations and isostaticity. Phys. Rev. E. 84, 041309 (2011). (10.1103/PhysRevE.84.041309) / Phys. Rev. E. by Y Jiao (2011)
  25. Zhao, J., Li, S., Jin, W. & Zhou, X. Shape effects on the random-packing density of tetrahedral particles. Phys. Rev. E 86, 031307 (2012). (10.1103/PhysRevE.86.031307) / Phys. Rev. E by J Zhao (2012)
  26. Li, S., Lu, P., Jin, W. & Meng, L. Quasi-random packing of tetrahedra. Soft Matter 9, 9298–9302 (2013). (10.1039/c3sm51710a) / Soft Matter by S Li (2013)
  27. Jin, W., Lu, P., Liu, L. & Li, S. Cluster and constraint analysis in tetrahedron packings. Phys. Rev. E 91, 042203 (2015). (10.1103/PhysRevE.91.042203) / Phys. Rev. E by W Jin (2015)
  28. Jiao, Y. & Torquato, S. Communication: a packing of truncated tetrahedra that nearly fills all of space and its melting properties. J. Chem. Phys. 135, 151101 (2011) (10.1063/1.3653938) / J. Chem. Phys. by Y Jiao (2011)
  29. Chen, D., Jiao, Y. & Torquato, S. Equilibrium phase behavior and maximally random jammed state of truncated tetrahedra. J. Phys. Chem. B 118, 7981–7992 (2014). (10.1021/jp5010133) / J. Phys. Chem. B by D Chen (2014)
  30. Damasceno, P. F., Engel, M. & Glotzer, S. C. Crystalline assemblies and densest packings of a family of truncated tetrahedra and the role of directional entropic forces. ACS Nano 6, 609–614 (2012). (10.1021/nn204012y) / ACS Nano by PF Damasceno (2012)
  31. Chen, E. R., Klotsa, D., Engel, M., Damasceno, P. F. & Glotzer, S. C. Complexity in surfaces of densest packings for families of polyhedral. Phys. Rev. X 4, 011024 (2014). / Phys. Rev. X by ER Chen (2014)
  32. Kallus, Y. & Elser, V. Dense-packing crystal structures of physical tetrahedra. Phys. Rev. E 83, 036703 (2011). (10.1103/PhysRevE.83.036703) / Phys. Rev. E by Y Kallus (2011)
  33. Kim, F., Connor, S., Song, H., Kuykendall, T. & Yang P. Platonic gold nanocrystals. Angew. Chem. Int. Ed 43, 3673–3677 (2004). (10.1002/anie.200454216) / Angew. Chem. Int. Ed by F Kim (2004)
  34. Greyson, E. C., Barton, J. E. & Odom, T. W. Tetrahedral zinc blende tin sulfide nano- and microcrystals. Small 2, 368–371 (2006). (10.1002/smll.200500460) / Small by EC Greyson (2006)
  35. Tsuji, M., Tang, X., Matsunaga, M., Maeda, Y. & Watanabe, M. Shape evolution of flag types of silver nanostructures from nanorod seeds in PVP-assisted DMF solution. Crystal Growth & Design 10, 5238–5243 (2010). (10.1021/cg101041m) / Crystal Growth & Design by M Tsuji (2010)
  36. Gantapara, A. P., de Graaf, J., van Roij, R. & Dijkstra, M. Phase diagram and structural diversity of a family of truncated cubes: degenerate close-packed structures and vacancy-rich states. Phys. Rev. Lett. 111, 015501 (2013). (10.1103/PhysRevLett.111.015501) / Phys. Rev. Lett. by AP Gantapara (2013)
  37. Marechal, M., Zimmermann, U. & Löwen, H. Freezing of parallel hard cubes with rounded edges. J. Chem. Phys. 136, 144506 (2012). (10.1063/1.3699086) / J. Chem. Phys. by M Marechal (2012)
  38. Gardner, M. in The Colossal Book of Mathematics: Classic Puzzles. Paradoxes and Problems 135 (Norton, New York, 2001).
Dates
Type When
Created 9 years, 10 months ago (Oct. 22, 2015, 5:14 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 8:53 a.m.)
Indexed 20 hours, 35 minutes ago (Aug. 28, 2025, 8:41 a.m.)
Issued 9 years, 10 months ago (Oct. 22, 2015)
Published 9 years, 10 months ago (Oct. 22, 2015)
Published Online 9 years, 10 months ago (Oct. 22, 2015)
Funders 0

None

@article{Jin_2015, title={Evolution of the dense packings of spherotetrahedral particles: from ideal tetrahedra to spheres}, volume={5}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep15640}, DOI={10.1038/srep15640}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Jin, Weiwei and Lu, Peng and Li, Shuixiang}, year={2015}, month=oct }